Advertisement

Elastic perfectly plastic constituents

  • Pierre M. Suquet
Part IV Elements of Homogenization for Inelastic Solid Mechanics
Part of the Lecture Notes in Physics book series (LNP, volume 272)

Keywords

Residual Stress Plastic Strain Approximate Model Yield Locus Kinematic Hardening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hill, R., The essential structure of constitutive laws for metal composites and polycristals, J. Mech. Phys. Solids, 15, p. 79–95, 1967.Google Scholar
  2. 2.
    Litewka, A., Sawczuk, A., Stanislawska, J., Simulation of oriented continuous damage evolution, J. Méca. Th. Appl., 3, p. 675–688, 1984.Google Scholar
  3. 3.
    Mandel, J., Plasticité classique et viscoplasticité, CISM Lecture Notes no 97, Springer-Verlag, Wein, 1972.Google Scholar
  4. 4.
    Hashin, Z., Analysis of composite materials: a survey, J. Appl. Mech., 50, p. 481–505, 1983.Google Scholar
  5. 5.
    Hill, R., A self consistent mechanics of composite materials, J. Mech. Phys. Solids, 13, p. 213–222, 1965.Google Scholar
  6. 6.
    Aboudi, J., Elastoplasticity theory for porous materials, Mech. Materials, 3, p. 81–94, 1984.ThéseGoogle Scholar
  7. 7.
    Hill, R., Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids, 11, p. 357–372, 1963.Google Scholar
  8. 8.
    Kröner, E., Statistical Continuum Mechanics, CISM Lecture Notes no 92, Springer-Verlag, Wein, 1972.Google Scholar
  9. 9.
    Duvaut, G., Homogénéisation et matériaux composites. Trends and Applications of Pure Mathematics to Mechanics, Ed. Ciarlet, Roseau. Springer-Verlag, Wein, p. 35–62, 1984.Google Scholar
  10. 10.
    Debordes, O., Licht, C., Marigo, J.J., Mialon, P., Michel, J.C., Suquet, P., Analyse limite de structures fortement hétérogénes. Note Technique 85-3, Université de Montpellier, 1985.Google Scholar
  11. 11.
    Marigo, J.J., Mialon, P., Michel, J.C., Suquet, P., Plasticité et homogénéisation: un exemple de calcul des charges limites d'une structure hétérogéne. Submitted.Google Scholar
  12. 12.
    Michel, J.C., Homogénéisation de matériaux élastoplastiques avec cavités. Thése, Paris 6, 1984.Google Scholar
  13. 13.
    Sanchez Palencia, E., Sanchez Palencia, J., Sur certains problémes physiques d'homogénéisation donnant lieu a des phénoménes de relaxation, C.R. Acad. Sc. Paris, (A), 286, 903–906, 1978.Google Scholar
  14. 14.
    Francfort, G., Leguillon, D., Suquet, P., Homogénéisation de milieux viscoélastiques linéaires de Kelvin Voigt, C.R. Acad. Sc. Paris, I, 296, 287–290, 1983.Google Scholar
  15. 15.
    Salençon, J., Calcul á la rupture et analyse limite, Presses ENPC, Paris, 1983.Google Scholar
  16. 16.
    Weill, F., Application de la théorie de l'homogénéisation á l'étude élastique et á la rupture de composites résine-fibres de verre, Thése Doct. Ing. Nantes, 1984.Google Scholar
  17. 17.
    Suquet, P., Local and global aspects in the mathematical theory of plasticity, in Plasticity Today, Ed. Bianchi & Sawczuk, Elsevier Pub., 1984.Google Scholar
  18. 18.
    Suquet, P., Méthodes d'homogén'eisation en Mécanique des solides, 15e Congrés du C.F.R. in Comportements nhéologiquez et structure des matériaux, Ed. Huet & Zaoui, Presses ENPC, p. 87–128, 1981.Google Scholar
  19. 19.
    Drucker, D.C., On minimum weight design and strength of nonhomogeneous plastic bodies, in Nonhomogeneiy in Etasticity and Plasticity, Ed. Olszak, Pergamon Press, 1959.Google Scholar
  20. 20.
    Shu, L.S., Rosen, B.W., Strength of fiber reinforced composites by limit analysis method., J. Composite Mat., 1, p. 366–381, 1967.Google Scholar
  21. 21.
    Mc Laughlin, P.V., Limit behavior of fibrous materials, Int. J. Solids Struct., 6, p. 1357–1376, 1970.Google Scholar
  22. 22.
    Le Nizhery, D., Calcul à la rupture des matériaux composites, Symposium Franco-Polonais, Cracovie 1977, in Problémes non linéaires de Mécanique, Ed. Acad. Sc. Pologne, Varsovie, 1980, p. 359–370.Google Scholar
  23. 23.
    De Buhan, P., Homogénéisation en calcul á la rupture: le cas du matériau composite multicouche, C.R. Acad. Sc. Paris, II, 296, p. 933–936, 1983.Google Scholar
  24. 24.
    De Buhan, P., Salenccon, J., Determination of a macroscopic yield criterion for a multilayered material, Colloque CNRS, Critéres de rupture des matériaux à structure interne orientée, Ed. J.P. Boehler, To be published.Google Scholar
  25. 25.
    Gurson, A.L., Continuum theory of ductile rupture by void nucleation and growth: I. Yield criteria and flow rules for porous ductile media, J. Eng. Mat. Tech., 99, 1977, p. 1–15.Google Scholar
  26. 26.
    Chrysochoos, A., Bilan énergétique en élastoplasticité grandes deformations, To be published in. J. Méca. Th. Appl. Google Scholar
  27. 27.
    Halphen, B., Nguyen Q.S., Sur les matériaux standard généralisés, J. Méca., 14, p. 39–63, 1975.Google Scholar
  28. 28.
    Germain, P., Nguyen, Q.S., Suquet, P., Continuum thermodynamics, J. Appl. Mech., 105, p. 1010–1020, 1983.Google Scholar
  29. 29.
    Rice, J.R., On the structure of stress-strain relations for time dependent plastic deformations in metals, J. Appt. Mech., 37,p. 728–737, 1970.Google Scholar
  30. 30.
    Dvorak, G., Rao, M., Axisymmetric plasticity theory of fibrous composites, Int. J. Eng. Sc., 9, p. 971, 1971.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Pierre M. Suquet
    • 1
    • 2
  1. 1.Laboratoire de Mécanique Génerale des Milieux ContinusUniversité des Sciences et Technique du LanguedocMontpellier Cédex
  2. 2.GRECO 47 “Grandes Déformations et Endommagement”France

Personalised recommendations