Advertisement

Chemometrics — Sampling strategies

  • Gerrit Kateman
Conference paper
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 141)

Abstract

Sampling strategies depend on the type of the object to be sampled, the objective of the principal and the means that are available for analysis. Taking into account the properties of the object, optimal sampling schemes can be developed for particulate material and internally correlated objects (fluids, gases and soil). Depending on the objective these senemes are aimed at information optimization, cost minimization or optimal information for control. The analyzing laboratory has its influence on the information that can be obtained through its speed and capacity.

Most strategies can be quantified by chemometric techniques.

Keywords

Elsevier Science Publisher Laboratory Sample Utilization Factor Sampling Constant Optimal Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. 1.
    Arbeitskreis “Automation in der Analyse”: Z. Anal. Chem. 261, 1 (1972)Google Scholar
  2. 2.
    Kratochvil, B., Wallace, D., Taylor, J. K.: Anal. Chem. 56, 113R (1984)Google Scholar
  3. 3.
    Ku, H. H.: NBS Spec. Pub. 519, 1 (1979)Google Scholar
  4. 4.
    ACS Committee on Environmental Improvement: Anal. Chem. 55, 2210 (1983)Google Scholar
  5. 5.
    Kateman, G., Pijpers, F. W.: Quality Control in Chemical Analysis, Wiley, New York 1981Google Scholar
  6. 6.
    Kateman, G.: Sampling, in: Chemometrics, mathematics and statistics in chemistry (Kowalski, B. R., ed.) p. 177, Reidel Dordrecht 1984Google Scholar
  7. 7.
    Cochran, W. B.: Sampling Techniques, Wiley, New York 1977Google Scholar
  8. 8.
    Kratochvil, B., Taylor, J. K.: Anal. Chem. 53 (8), 924A (1981)Google Scholar
  9. 9.
    Smith, R., James, G. V.: The sampling of bulk materials, Royal Soc. of Chem., London 1981Google Scholar
  10. 10.
    Bicking, C. A., in: Treatise on analytical chemistry (Kolthoff, I. M., Elving, P. J., ed.) p. 299, Wiley, New York 19792 Google Scholar
  11. 11.
    Horwitz, W. J.: J. Assoc. Off. Anal. Chem. 59, 238 (1976)Google Scholar
  12. 12.
    Pijper, J. W.: Anal. Chim. Acta 170, 159 (1985)Google Scholar
  13. 13.
    Illingworth, F. K.: Trends in Anal. Chem. 4 (5), IX (1985)Google Scholar
  14. 14.
    Kratochvil, B. G., Taylor, J. K.: NBS Tech. Note 1153, Nat. Bureau of Standards, Washington DC 1982Google Scholar
  15. 15.
    Bauer, C. F.: J. Chem. Educ. 62, 253 (1985)Google Scholar
  16. 16.
    Kratochvil, B., Reid, R. S.: ibid. 62, 252 (1985)Google Scholar
  17. 17.
    Kateman, G., Van der Wiel, P. F. A., Janse, T. A. H. M., Vandeginste, B. G. M.: CLEOPATRA, Elsevier Scientific Software, Amsterdam 1985Google Scholar
  18. 18.
    Baule, B., Benedetti-Pichler, A. A.: Z. Anal. Chem. 74, 442 (1928)Google Scholar
  19. 19.
    Visman, J.: Mat. Res. Stds. 9 (11), 8 (1969)Google Scholar
  20. 20.
    Visman, J., Duncan, A. J., Lerner, M.: ibid. 11 (8), 32 (1971)Google Scholar
  21. 21.
    Visman, J.: J. Mat. 7, 345 (1972)Google Scholar
  22. 22.
    Gy, M.: Sampling of particulate materials: theory and practice, Elsevier, Amsterdam 1979Google Scholar
  23. 23.
    Harris, W. E., Kratochvil, B.: Anal. Chem. 46, 313 (1974)Google Scholar
  24. 24.
    Ingamells, C. O., Switzer, P.: Talanta 20, 547 (1973)Google Scholar
  25. 25.
    Ingamells, C. O.: ibid. 21, 141 (1974)Google Scholar
  26. 26.
    Ingamells, C. O.: ibid. 23, 263 (1976)Google Scholar
  27. 27.
    Harrison, S. H., Zeisler, R.: “NBS Internal report 80-2164”, p. 66, US National Bureau of Standards, Washington 1980Google Scholar
  28. 28.
    Brands, G.: Fres. Z. Anal. Chem. 314, 6 (1983)Google Scholar
  29. 29.
    Brands, G.: ibid. 314, 646 (1983)Google Scholar
  30. 30.
    Fasset, J. D., Roth, J. R., Morrison, G. H.: Anal. Chem. 49, 2322 (1977)Google Scholar
  31. 31.
    Scilla, G. J., Morrison, G. H.: ibid. 49, 1529 (1977)Google Scholar
  32. 32.
    Inczédy, J.: Talanta 29, 643 (1982)Google Scholar
  33. 33.
    Danzer, K., Doerffel, K., Ehrhardt, H., Grissler, M., Ehrlich, G., Gadow, P.: Anal. Chim. Acta 105, 1 (1979)Google Scholar
  34. 34.
    Box, G. E. P., Jenkins, G. M.: “Time Series Analysis”, Holden-Day, San Francisco 1970Google Scholar
  35. 35.
    Armstrong, M., Jabin, R.: Math. Ged. 13, 455, (1981)Google Scholar
  36. 36.
    David, M.: “Geological Ore Reserve Estimation”, Elsevier, Amsterdam 1977Google Scholar
  37. 37.
    Journel, A. G., Huijbregts, C. J.: “Mining Geostatistics”, Academic Press London 1978Google Scholar
  38. 38.
    Davis, J. C., McCullagh, M.: “Display and Analysis of Spatial Data”, Wiley, New York 1975Google Scholar
  39. 39.
    Davis, J. C., in: (Kowalski, B. R., ed.) “Chemometrics, mathematics and statistics in chemistry”, p. 419, Reidel Dordrecht 1984Google Scholar
  40. 40.
    Clark, I.: “Practical Geostatistics”, Applied Science Publishers, Ltd., London 1979Google Scholar
  41. 41.
    Olea, R. A.: “Measuring spatial dependence with semivariograms”, “Kansas Geological Survey Series on Spatial Analysis”, no. 3, University Kansas,LawrenceGoogle Scholar
  42. 42.
    Vandeginste, B. G. M., Salemink, P. J. M., Duinker, C. J.: Neth. J. Sea Res. 10, 59 (1976)CrossRefGoogle Scholar
  43. 43.
    Müskens, P. J. W. M., Hensgens, W. G. J.: Water Res. 11, 509 (1977)CrossRefGoogle Scholar
  44. 44.
    Müskens, P. J. W. M., Kateman, G.: Anal. Chim. Acta 103, 1 (1978)CrossRefGoogle Scholar
  45. 45.
    Kateman, G., Müskens, P. J. W. M.: ibid. 103, 11 (1978)CrossRefGoogle Scholar
  46. 46.
    Bobec, B., Bluis, D.: J. Hydrol. 44, 17 (1979)CrossRefGoogle Scholar
  47. 47.
    Bobec, B., Lachance, M., Cazaillet, O.: Eau Que 16, 39 (1973)Google Scholar
  48. 48.
    Nelson, J. D., Ward, R. C.: Groundwater 19, 617 (1981)Google Scholar
  49. 49.
    Bouma, J., in: “Soil Spatial Variability” (Nelson, D. R., Bouma, J., ed.) p. 130, Wageningen 1985Google Scholar
  50. 50.
    Gruijter, J. J. de, Marsman, B. A., in: “Soil Spatial Variability” (Nelson, D. R., Bouma, J., ed.) p. 150, Wageningen 1985Google Scholar
  51. 51.
    Bouma, J.: Agric. Water Managm. 6, 177 (1983)CrossRefGoogle Scholar
  52. 52.
    Webster, R., Burgess, T. M.: ibid. 6, 111 (1983)CrossRefGoogle Scholar
  53. 53.
    Grinten, P. M. E. M. van der: J. Instr. Soc. Am. 12 (1), 48 (1965)Google Scholar
  54. 54.
    Grinten, P. M. E. M. van der: ibid. 13 (2), 58 (1966)Google Scholar
  55. 55.
    Leemans, F. A.: Anal. Chem. 43 (11), 36A (1971)Google Scholar
  56. 56.
    Janse, T. A. H. M., Kateman, G.: Anal. Chim. Acta 150, 219 (1983)CrossRefGoogle Scholar
  57. 57.
    Müskens, P. J. W. M.: ibid. 103, 445 (1978)CrossRefGoogle Scholar
  58. 58.
    Vandeginste, B. G. M.: ibid. 122, 435 (1980)CrossRefGoogle Scholar
  59. 59.
    Vollenbroek, J. G., Vandeginste, B. G. M.: ibid. 133, 85 (1981)CrossRefGoogle Scholar
  60. 60.
    Janse, T. A. H. M., Kateman, G.: ibid. 159, 181 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Gerrit Kateman
    • 1
  1. 1.Laboratory for Analytical Chemistry, Faculty of SciencesCatholic University of Nijmegen, ToernooiveldNijmegenThe Netherlands

Personalised recommendations