J. Avenhaus, K. Madlener; Subrekursive Komplexitaet bei Gruppen; I. Gruppen mit vorgeschriebener Komplexitaet; Acta Informatica 9 (1977), 87–104.
Google Scholar
G. Bauer; Zur Darstellung von Monoiden durch konfluente Regelsysteme; dissertation, Fachbereich Informatik, Universitaet Kaiserslautern, 1981.
Google Scholar
G. Bauer; N-level rewriting system; Theoret. Comput. Science 40 (1985), 85–99.
Google Scholar
G. Bauer, F. Otto; Finite complete rewriting systems and the complexity of the word problem; Acta Informatica 21 (1984), 521–540.
Google Scholar
R. Bieri; Homological dimension of discrete groups; Queen Mary College Mathematics Notes, London, 1976.
Google Scholar
R. Bieri; A connection between the integral homology and the centre of a rational linear group; Math. Z. 170 (1980), 263–266.
Google Scholar
R.V. Book; Thue systems as rewriting systems; in J.P. Jouannaud (ed.), Rewriting Techniques and Applications, Lecture Notes Comp. Science 202 (1985), 63–94.
Google Scholar
R.V. Book, M. Jantzen, C. Wrathall; Monadic Thue systems; Theoret. Comput. Science 19 (1982), 231–251.
Google Scholar
K.S. Brown; Finiteness properties of groups, preprint.
Google Scholar
V. Diekert; Complete semi-Thue systems for abelian groups; Theoret. Comput. Science 44 (1986), 199–208.
Google Scholar
A. Grzegorczyk; Some classes of recursive functions; Rozprawy Math. 4 (1953), 1–45.
Google Scholar
M. Jantzen; A note on a special one-rule semi-Thue system; Inf. Proc. Letters 21 (1985), 135–140.
Google Scholar
M. Jantzen; Thue congruences and complete string rewriting systems; Habilitationsschrift; Fachbereich Informatik, Universitaet Hamburg, 1986.
Google Scholar
D. Kapur, P. Narendran; A finite Thue system with decidable word problem and without equivalent finite canonical system; Theoret. Comput. Science 35 (1985), 337–344.
Google Scholar
S. Kemmerich; Unendliche Reduktionssysteme; dissertation, Fachbereich Mathematik, TH Aachen, 1983.
Google Scholar
Ph. LeChenadec; Canonical Forms in Finitely Presented Algebras; Pitman, London, John Wiley & Sons,Inc., New York-Toronto, 1986.
Google Scholar
K. Madlener,F. Otto; Pseudo-natural algorithms for the word problem for finitely presented monoids and groups; J. Symbolic Comput. 1 (1985), 383–418.
Google Scholar
K. Madlener, F. Otto; Pseudo-natural algorithms for finitely generated presentations of monoids and groups; J. Symbolic Comput., to appear.
Google Scholar
C. O'Dunlaing; Infinite regular Thue systems; Theoret. Comput. Science 25 (1983), 171–192.
Google Scholar
C.C. Squier; Word problems and a homological finiteness condition for monoids; J. Pure Appl. Algebra, to appear.
Google Scholar
J.R. Stallings; A finitely presented group whose 3-dimensional integral homology is not finitely generated; American J. of Mathematics 85 (1963), 541–543.
Google Scholar
K. Weihrauch; Teilklassen primitiv-rekursiver Wortfunktionen; Report No. 91, GMD Bonn, 1974.
Google Scholar