Algorithmic complexity of term rewriting systems

  • C. Choppy
  • S. Kaplan
  • M. Soria
Efficiency Of Rewriting
Part of the Lecture Notes in Computer Science book series (LNCS, volume 256)


For the class of the regular term rewriting systems, we have provided ways of obtaining asymptotic evaluations of the cost series. The user does not need to actually manipulate formal series, since our results are given under the form of ready-to-use formulae. These results solely depend on physical characteristics of the system, easily obtainable : number of variables and of constructors in the lefthand sides, occurrences of derived operators in the right-hand sides. Then, the average cost is constant, polynomial or exponential, according to the position of the singularity of the expressions Qi(N(z)) closest to the origin.


Normal Form Average Cost Regular System Real Positive Root Asymptotic Evaluation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

5. References

  1. [Bel 85]
    Belhassen S., "Séries formelles de complexité dans les types abstraits algébriques", Rapport de DEA, Orsay 1985.Google Scholar
  2. [BBWT 81]
    Bergstra J.A., Broy M., Wirsing M., Tucker J.V., "On the power of algebraic specifications", Proc. of the M.F.C.S. Conference, L.N.C.S. 118, Springer Verlag, 1981.Google Scholar
  3. [BCV 85]
    Bidoit M., Choppy C., Voisin F., "The Asspegique specification environment: motivations and design", Proc. 3rd Workshop on Theory and Applications of Abstract data types", Bremen, Nov. 1984. Recent Trends on Data Type Specification (H.-J. Kreowski ed.), Informatik Fachberichte 116, Springer-Verlag, Berlin-Heidelberg, 1985.Google Scholar
  4. [C&K 83]
    Choppy C., Kaplan S., "Complexity calculus for abstract data types", LRI Report no 147, Nov. 1983.Google Scholar
  5. [CLR 80]
    Choppy C., Lescanne P., Rémy J.-L., "Improving abstract data type specification by appropriate choice of constructors", Proc. Intern. Workshop on Program Construction, Bonas, France, 1980, Mac Millan, A. Biermann, G. Guiho and Y. Kodratoff (eds), 1983.Google Scholar
  6. [Der 82]
    N. Dershowitz, "Orderings for term-rewriting systems", T.C.S. vol. 17.3, March 1982.Google Scholar
  7. [Der 85]
    N. Dershowitz, "Termination", Proc. of the RTA'85 Conference, L.N.C.S. 202, 1985.Google Scholar
  8. [E&M 81]
    Ehrig H., Mahr B., "Complexity of algebraic implementations for abstract data types", J. of Computer and System Sciences, vol 23, no 2, Oct, 1981, pp. 223–253.Google Scholar
  9. [Fla 87]
    Flajolet P., "The symbolic operator method", in Mathematical methods in the analysis of algorithms and data structures, L.N.C.S., Springer-Verlag, to appear 1987.Google Scholar
  10. [F&S 82]
    Flajolet P., Steyaert J.M., "A complexity calculus for classes of recursive search programs over tree structures", Proc. 22nd IEEE Symp. on Foundations of Computer Science, Nashville, 1982, pp. 386–393.Google Scholar
  11. [F&G 84]
    Forgaard R., Guttag J.V., "REVE: a term rewriting system generator with failure-resistant Knuth-Bendix", Proc. of an NSF Workshop on the rewrite rule laboratory, Report no 84GEN008, General Electric, Apr. 1984.Google Scholar
  12. [FGJM 84]
    Futatsugi K., Goguen J.A., Jouannaud J.P., Meseguer J., "Principles of OBJ2", CRIN Report 84-R-066.Google Scholar
  13. [GSF 86]
    Gaudel M.C., Soria M., Froidevaux C., "Types de données et algorithmes — vol 1: Analyse d'algorithmes, Définition des types de données", Collection Didactique, INRIA, 1986.Google Scholar
  14. [GHW 85]
    Guttag J.V., Horning J.J., Wing J.M., "Larch in five easy pieces" Digital System Research Center Report, Jul. 1985.Google Scholar
  15. [Kap 86]
    Kaplan S., "A compiler for conditional term rewriting systems" Proc. of the RTA'87 Conference, L.N.C.S. this volume, also: L.R.I. Report no 315, Dec. 1986.Google Scholar
  16. [Knu 68]
    Knuth D., "The art of computer programming: Fundamental algorithms", Addison Wesley, Reading, 1968.Google Scholar
  17. [Knu 73]
    Knuth D., "The art of computer programming: Sorting and searching", Addison Wesley, Reading, 1973.Google Scholar
  18. [M&M 78]
    Meir A., Moon J.W., "On the altitude of nodes in random trees", Canadian Journal of Math. 30, 1978, pp. 997–1015.Google Scholar
  19. [MAPLE 85]
    Char B.W., Geddes K.O., Gonnet G.H., Watt S.M., "MAPLE: Reference Manual", University of Waterloo, 1985.Google Scholar
  20. [S&S 84]
    Soria M., Steyaert J.M., "Average efficiency of pattern matching on Lisp expressions," Proc. of the CAAP 84 Conference, also: LRI Report no 178, May 1984.Google Scholar
  21. [Stey 84]
    Steyeart J.M., "Complexité et structure des algorithmes", Thèse d'Etat, Université de Paris 7, 1984.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • C. Choppy
    • 1
  • S. Kaplan
    • 1
  • M. Soria
    • 1
  1. 1.Laboratoire de Recherche en Informatique U.A. C.N.R.S. 410Université Paris-Sud, Bât 490Orsay CédexFrance

Personalised recommendations