A general complete E-unification procedure

  • Jean H. Gallier
  • Wayne Snyder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 256)


Equational Theory Unification Algorithm Compound Term Brute Force Approach Soundness Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    Boyer, R.S., Moore, J.S., The Sharing of Structure in Theorem-proving Programs, Machine Intellegence 7: 101–116 (1972).Google Scholar
  2. [2]
    Church, A., A Formulation of the Simple Theory of Types, Journal of Symbolic Logic, 5: 56–68 (1940).Google Scholar
  3. [3]
    Fages, F. and Huet, G., Complete Sets of Unifiers and Matchers in Equational Theories, TCS 43(2,3), pp. 189–200, 1986.Google Scholar
  4. [4]
    Fay, M., First-order Unification in an Equational Theory, Proc. 4th Workshop on Automated Deduction, Austin Texas, 1979.Google Scholar
  5. [5]
    Gallier, J.H. Logic for Computer Science: Foundations of Automatic Theorem Proving. New York: Harper and Row (1986).Google Scholar
  6. [6]
    Gallier, J.H., Raatz, S., and Snyder, W., Theorem Proving using Rigid E-Unification: Equational Matings, submitted to LICS 1987.Google Scholar
  7. [7]
    Herbrand, J., Sur la Théorie de la Démonstration. In: Logical Writings, W. Goldfarb, ed., Cambridge, 1971.Google Scholar
  8. [8]
    Huet, G., Résolution d'Equations dans les Langages d'Ordre 1,2,...,ω, Thèse d'Etat, Université de Paris VII, 1976.Google Scholar
  9. [9]
    Huet, G. and Oppen, D. C., Equations and Rewrite Rules: A Survey, in: R. V. Book (ed.), Formal Languages: Perspectives and Open Problems, Academic Press, NY, 1982.Google Scholar
  10. [10]
    Kirchner, C., Méthodes et Outils de Conception Systematique d'Algorithmes d'Unification dans les Theories Equationnelles, Thèse d'Etat, Université de Nancy I, 1985.Google Scholar
  11. [11]
    Kirchner, C. Computing Unification Algorithms. 1st IEEE Symposium on Logic in Computer Science, Cambridge, Massachusetts, 206–216, June 1986.Google Scholar
  12. [12]
    Kozen, D. Positive First-Order Logic is NP-Complete. IBM Journal of Research and Development, 25(4), 327–332, 1981.Google Scholar
  13. [13]
    Martelli, A., Montanari, U., An Efficient Unification Algorithm, ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2 (April 1982), pp. 258–282.Google Scholar
  14. [14]
    Martelli, A., Moiso, C., Rossi, G.F., An Algorithm for Unification in Equational Theories, Third IEEE Symposium on Logic Programming, Salt Lake City, Utah, pp. 180–186, September 1986.Google Scholar
  15. [15]
    Paterson, M.S., Wegman, M.N., Linear Unification, Journal of Computer and System Sciences 16 (1978), pp. 158–167.Google Scholar
  16. [16]
    Plotkin, G., Building in Equational Theories, in: Machine Intelligence 7: 73–90 (1972).Google Scholar
  17. [17]
    Robinson, J.A., A Machine Oriented Logic Based on the Resolution Principle, JACM 12 (Jan. 1965), pp. 23–41.Google Scholar
  18. [18]
    Siekmann, J. H., Universal Unification, Proc. CADE-7, Napa 1984, 1–42.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Jean H. Gallier
    • 1
  • Wayne Snyder
    • 1
  1. 1.Department of Computer and Information ScienceUniversity of PennsylvaniaPhiladelphia

Personalised recommendations