Schematization of infinite sets of rewrite rules. Application to the divergence of completion processes

  • Hélène Kirchner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 256)


Equational Theory Unification Algorithm Automate Deduction Completion Process Completion Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.A. Ardis, ”Data Abstraction Transformations,” Technical Report TR-925, University of Maryland, Maryland (USA), 1980.Google Scholar
  2. 2.
    F. Bellegarde, ”Utilisation des Systèmes de Réécriture d'Expressions Fonctionnelles comme outils de Transformation de Programmes Itératifs,” Thèse de doctorat d'Etat, Université de Nancy I, 1985.Google Scholar
  3. 3.
    J.Y. Cras, ”Conception d'un système modulaire traitant le cas de non-convergence de l'algorithme de Knuth-Bendix,” Rapport de stage, Ecole Centrale des Arts et Manufactures, Chatenay-Malabry, 1983.Google Scholar
  4. 4.
    N. Dershowitz and L. Marcus, ”Existence And Construction of Rewrite Systems,” Research Report, University of Illinois, USA, 1982.Google Scholar
  5. 5.
    K. Drosten, ”Term Rewriting Systems with Restricted Variables,” Bericht Nr.85-11, Institut fur Informatik, Braunschweig, 1985.Google Scholar
  6. 6.
    M. Fay, ”First-Order Unification in an Equational Theory,” Proceedings of the 4th Workshop on Automated Deduction, pp. 161–167, Austin, Texas, 1979.Google Scholar
  7. 7.
    M. Hermann and I. Privara, ”On nontermination of Knuth-Bendix algorithm,” Research Report VUSEI-AR-OPS-3/85, Institute of Socio-Economic Information and Automation, CS-842 21 Bratislava (Czechoslovakia), 1985.Google Scholar
  8. 8.
    G. Huet, ”Confluent reductions: abstract properties and applications to term rewriting systems,” J. of ACM, vol. 27, no. 4, pp. 797–821, Oct. 1980.Google Scholar
  9. 9.
    G. Huet, ”A complete proof of correctness of the Knuth-Bendix completion algorithm,” J. Comp. Sys. Sc., vol. 23, no. 1, pp. 11–21, Aug. 1981.Google Scholar
  10. 10.
    J.M. Hullot, ”Canonical Forms And Unification,” in Proceedings of the Fifth Conference on Automated Deduction, Lecture Notes in Computer Science, vol. 87, pp. 318–334, Springer-Verlag, Les Arcs, France, July 1980.Google Scholar
  11. 11.
    J.Jouannaud and H.Kirchner, ”Completion of a set of rules modulo a set of equations,” SIAM J. of Computing, vol. 15(4), 1986.Google Scholar
  12. 12.
    J.P. Jouannaud and Y. Kodratoff, ”Program Synthesis From Example of Behaviour,” Proc. of the International Workshop on Program Construction. Chateau De Bonas. Ed. Biermann And Guiho. Reidel Publish, 1981.Google Scholar
  13. 13.
    J. P. Jouannaud, C. Kirchner, and H. Kirchner, ”Incremental Construction of Unification Algorithms in Equational Theories,” in Proceedings of the International Conference On Automata, Languages and Programming, Lecture Notes in Computer Science, vol. 154, pp. 361–373, Springer-Verlag, Barcelona Spain, 1983.Google Scholar
  14. 14.
    C. Kirchner and H. Kirchner, ”Contribution à la résolution d'équations dans les algèbres libres et les variétés équationnelles d'algèbres,” Thèse de 3ème cycle, Université de Nancy I, 1982.Google Scholar
  15. 15.
    C. Kirchner, ”Méthodes et outils de conception systématique d'algorithmes d'unification dans les théories équationnelles,” Thèse de doctorat d'Etat, Université de Nancy I, 1985.Google Scholar
  16. 16.
    H. Kirchner, ”Preuves par complétion dans les variétés d'algèbres,” Thèse de doctorat d'Etat, Université de Nancy I, 1985.Google Scholar
  17. 17.
    D. Knuth and P. Bendix, ”Simple Word Problems in Universal Algebras,” Computational Problems in Abstract Algebra Ed. Leech J., Pergamon Press, pp. 263–297, 1970.Google Scholar
  18. 18.
    G. Peterson and M. Stickel, ”Complete sets of reduction for equational theories with complete unification algorithms,” J. of ACM, vol. 28, no. 2, pp. 233–264, 1981.Google Scholar
  19. 19.
    P. Rety, C. Kirchner, H. Kirchner, and P. Lescanne, ”NARROWER: A new Algorithm for Unification and its application to Logic Programming,” in Proc. lrst Conf. on Rewriting Techniques and Applications, Lecture Notes in Computer Science, vol. 202, pp. 141–157, Springer-Verlag, Dijon (France), 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Hélène Kirchner
    • 1
  1. 1.Centre de Recherche en Informatique de NancyVandoeuvre-les-Nancy CedexFrance

Personalised recommendations