Advertisement

Groups presented by certain classes of finite length-reducing string-rewriting systems

  • Klaus Madlener
  • Friedrich Otto
Theoretical Aspects 2
Part of the Lecture Notes in Computer Science book series (LNCS, volume 256)

Keywords

Word Problem Free Product Abelian Subgroup Finite Index Finite Rank 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.W. Anissimov, F.D. Seifert; Zur algebraischen Charakteristik der durch kontext-freie Sprachen definierten Gruppen; Elektr. Informationsverarbeitung und Kybernetik EIK 11 (1975), 695–702.Google Scholar
  2. 2.
    J. Avenhaus, K. Madlener, F. Otto; Groups presented by finite two-monadic Church-Rosser Thue systems; Trans. Amer. Math. Soc. 297 (1986), 427–443.Google Scholar
  3. 3.
    R.V. Book; Confluent and other types of Thue systems; Journal Assoc. Comput. Mach. 29 (1982), 171–182.Google Scholar
  4. 4.
    R.V. Book; Thue systems as rewriting systems, in: J. P. Jouannaud (ed.), Rewriting Techniques and Applications; Lect. Notes Comp. Sci. 202 (1985), 63–94.Google Scholar
  5. 5.
    H.Buecken; Reduction systems and small cancellation theory; Proc. 4th Workshop on Automated Deduction, 1979, 53–59.Google Scholar
  6. 6.
    Y. Cochet; Church-Rosser congruences on free semigroups; Coll. Math. Soc. Janos Bolyai: Algebraic Theory of Semigroups 20 (1976), 51–60.Google Scholar
  7. 7.
    V. Diekert; Some remarks on presentations by finite Church Rosser Thue systems; Proceedings STACS 87, Lect. Notes Comp. Sci. 247 (1987), 272–285.Google Scholar
  8. 8.
    M.J. Dunwoody; The accessibility of finitely presented groups; Inventiones Mathematicae 81 (1985), 449–457.Google Scholar
  9. 9.
    R.H. Gilman; Computations with rational subsets of confluent groups; Proceedings of EUROSAM 84, Lect. Notes Comp. Sci. 174 (1984), 207–212.Google Scholar
  10. 10.
    R.H. Haring-Smith; Groups and simple languages; Trans. Amer. Math. Soc. 279 (1983), 337–356.Google Scholar
  11. 11.
    R.C. Lyndon, P.E. Schupp; Combinatorial Group Theory, Springer-Verlag: Berlin, Heidelberg, New York, 1977.Google Scholar
  12. 12.
    K. Madlener, F. Otto; Commutativity in groups presented by finite Church-Rosser Thue systems, submitted for publication.Google Scholar
  13. 13.
    W. Magnus, A. Karrass, D. Solitar; Combinatorial Group Theory; 2nd revised ed., Dover Publ., New York, 1976.Google Scholar
  14. 14.
    D.E. Muller, P. E. Schupp; Groups, the theory of ends, and context-free languages; Journal Comp. System Sci. 26 (1983), 295–310.Google Scholar
  15. 15.
    M. Nivat; On some families of languages related to the Dyck languages; 2nd ACM Symp. on Theory of Comput. (1970), 221–225.Google Scholar
  16. 16.
    J.M. Autebert, L. Boasson, G. Senizergues; Groups and NTS languages; submitted for publication.Google Scholar
  17. 17.
    J.A. Wolf; Growth of finitely generated solvable groups and curvature of Riemannian manifolds; Journal Differential Geometry 2 (1968), 421–446.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Klaus Madlener
    • 1
  • Friedrich Otto
    • 1
  1. 1.Fachbereich InformatikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations