Groups presented by certain classes of finite length-reducing string-rewriting systems

  • Klaus Madlener
  • Friedrich Otto
Theoretical Aspects 2
Part of the Lecture Notes in Computer Science book series (LNCS, volume 256)


Word Problem Free Product Abelian Subgroup Finite Index Finite Rank 


  1. 1.
    A.W. Anissimov, F.D. Seifert; Zur algebraischen Charakteristik der durch kontext-freie Sprachen definierten Gruppen; Elektr. Informationsverarbeitung und Kybernetik EIK 11 (1975), 695–702.Google Scholar
  2. 2.
    J. Avenhaus, K. Madlener, F. Otto; Groups presented by finite two-monadic Church-Rosser Thue systems; Trans. Amer. Math. Soc. 297 (1986), 427–443.Google Scholar
  3. 3.
    R.V. Book; Confluent and other types of Thue systems; Journal Assoc. Comput. Mach. 29 (1982), 171–182.Google Scholar
  4. 4.
    R.V. Book; Thue systems as rewriting systems, in: J. P. Jouannaud (ed.), Rewriting Techniques and Applications; Lect. Notes Comp. Sci. 202 (1985), 63–94.Google Scholar
  5. 5.
    H.Buecken; Reduction systems and small cancellation theory; Proc. 4th Workshop on Automated Deduction, 1979, 53–59.Google Scholar
  6. 6.
    Y. Cochet; Church-Rosser congruences on free semigroups; Coll. Math. Soc. Janos Bolyai: Algebraic Theory of Semigroups 20 (1976), 51–60.Google Scholar
  7. 7.
    V. Diekert; Some remarks on presentations by finite Church Rosser Thue systems; Proceedings STACS 87, Lect. Notes Comp. Sci. 247 (1987), 272–285.Google Scholar
  8. 8.
    M.J. Dunwoody; The accessibility of finitely presented groups; Inventiones Mathematicae 81 (1985), 449–457.Google Scholar
  9. 9.
    R.H. Gilman; Computations with rational subsets of confluent groups; Proceedings of EUROSAM 84, Lect. Notes Comp. Sci. 174 (1984), 207–212.Google Scholar
  10. 10.
    R.H. Haring-Smith; Groups and simple languages; Trans. Amer. Math. Soc. 279 (1983), 337–356.Google Scholar
  11. 11.
    R.C. Lyndon, P.E. Schupp; Combinatorial Group Theory, Springer-Verlag: Berlin, Heidelberg, New York, 1977.Google Scholar
  12. 12.
    K. Madlener, F. Otto; Commutativity in groups presented by finite Church-Rosser Thue systems, submitted for publication.Google Scholar
  13. 13.
    W. Magnus, A. Karrass, D. Solitar; Combinatorial Group Theory; 2nd revised ed., Dover Publ., New York, 1976.Google Scholar
  14. 14.
    D.E. Muller, P. E. Schupp; Groups, the theory of ends, and context-free languages; Journal Comp. System Sci. 26 (1983), 295–310.Google Scholar
  15. 15.
    M. Nivat; On some families of languages related to the Dyck languages; 2nd ACM Symp. on Theory of Comput. (1970), 221–225.Google Scholar
  16. 16.
    J.M. Autebert, L. Boasson, G. Senizergues; Groups and NTS languages; submitted for publication.Google Scholar
  17. 17.
    J.A. Wolf; Growth of finitely generated solvable groups and curvature of Riemannian manifolds; Journal Differential Geometry 2 (1968), 421–446.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Klaus Madlener
    • 1
  • Friedrich Otto
    • 1
  1. 1.Fachbereich InformatikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations