Advertisement

Descendants of regular language in a class of rewriting systems: Algorithm and complexity of an automata construction

  • M. Benois
Theoretical Aspects 2
Part of the Lecture Notes in Computer Science book series (LNCS, volume 256)

Keywords

Word Problem Regular Language Initial Vertex Congruence Class Finite State Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    M. Benois: Parties rationnelles du groupe libre, C.R.Acad.Sci.Paris ser. A269, 1969, 1188–1190.Google Scholar
  2. [2]
    M.Benois et P.Butzbach: Langages algébriques déterministes et transversale rationnelle, Rapport de recherche n o 446, L.S.D. IMAG 1984.Google Scholar
  3. [3]
    M.Benois et J.Sakarovitch: On the complexity of some extended word problems defined by cancellation rules, Information Processing Letters à paraître.Google Scholar
  4. [4]
    J.Berstel: Transductions and context free languages. Teubner 1979.Google Scholar
  5. [5]
    R. Book, M. Jantzen and C. Wrathall, Monadic Thue Systems, Theoret. Comput. Sci. 19 (1982) 231–251.Google Scholar
  6. [6]
    R.V. Book and F. Otto: Cancellatio rules and extended word problems, Information Processing Letters 20, 1985,5–11.Google Scholar
  7. [7]
    D. Dolev and A. Yao: On the security of public key protocols, I.E.E.E. Trans.Information Theory IT 29, 1983, 198–208.Google Scholar
  8. [8]
    S.Eilenberg: Automata, Languages, and Machines Vol A, Academic Press, 1974.Google Scholar
  9. [9]
    G. Huet: Confluent reductions: Abstract properties and applications to term rewriting systems, J. Assoc. Comp. Mach. 27, 1980 797–821.Google Scholar
  10. [10]
    J.Hopcroft and J.Ullman: Introduction to Automata Theory, Langages and Computation Addison-Wesley, 1979.Google Scholar
  11. [11]
    P. Narendran: Church-Rosser and related Thue systems, Report n o 84CRD176, General Electric Corporate Research and Development, Schenectady, N.Y., 1984.Google Scholar
  12. [12]
    M.Nivat (et M.Benois): Congruences parfaites et quasi parfaites, Séminaire Dubreil, 25o année, 1971–72, 7-01-09.Google Scholar
  13. [13]
    J.Sakarovitch: Description des monoïdes de type fini, Rapport n o 80–36 LITP, 1980.Google Scholar
  14. [14]
    J.Sakarovitch: Syntaxe des langages de Chomsky Thèse Paris 7 1979.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • M. Benois
    • 1
  1. 1.L.S.D., I.M.A.G., Grenoble 1 UniversitySt Martin d'Hères Cedex

Personalised recommendations