An interactive graphical manipulation system for higher objects based on relational algebra

  • Hans Zierer
  • Gunther Schmidt
  • Rudolf Berghammer
Graph Manipulation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 246)


A set of bricks is introduced to serve as elementary particles in the programming process. They are highly generic building blocks in a graphical language using DAGs (directed acyclic graphs) and may be manipulated by graphic interaction. Semantics of the language as well as that of the basic DAG-operations is given in terms of relational algebra. An extended example shows the application of the language.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bauer Wössner 84]
    Bauer F.L., Wössner H.: Algorithmische Sprache und Programmentwicklung, 2nd edition. Springer, Berlin etc., 1984Google Scholar
  2. [Bauer et al. 85]
    Bauer F.L., et al.: The Munich Project CIP. Lect. Notes in Comp. Sci. 183, Springer, 1985Google Scholar
  3. [Berghammer 86]
    Berghammer R.: On the Use of Composition in Transformational Programming. In: Meertens L.G.L.T. (ed.): Proc. TC2 Working Conference on Program Specification and Transformation. Bad Tölz, April 15–17, 1986. North-Holland, Amsterdam (1986)Google Scholar
  4. [Berghammer Schmidt Zierer 86]
    Berghammer R., Schmidt G., Zierer H.: Symmetric Quotients. Technical Report TUM-I8620, Techn. Univ. München (1986).Google Scholar
  5. [Berghammer Zierer 86]
    Berghammer R., Zierer H.: Relational Algebraic Semantics of Deterministic and Nondeterministic Programs. Theoret. Comp. Sci. 43 (1986)Google Scholar
  6. [Cardoso 82]
    Cardoso R.: Untersuchung paralleler Programme mit relationenalgebraischen Methoden. Diplomarbeit, Institut für Informatik, Techn. Univ. München (1982)Google Scholar
  7. [Milner 78]
    Milner R.: A Theory of Type Polymorphism in Programming. J. of Comp. Syst. Sci. 17 (1978), 348–375Google Scholar
  8. [Schmidt Ströhlein 85]
    Schmidt G., Ströhlein T.: Relation algebras — concept of points and representability. Discrete Math. 54 (1985), 83–92Google Scholar
  9. [Stoy 77]
    Stoy J.: Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory. MIT Press, 1977Google Scholar
  10. [Zierer 83]
    Zierer H.: Relationale Semantik. Diplomarbeit, Institut für Informatik, Techn. Univ. München (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Hans Zierer
    • 1
  • Gunther Schmidt
    • 1
  • Rudolf Berghammer
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenMünchen 2

Personalised recommendations