Advertisement

On approximation algorithms for Steiner's problem in graphs

  • Peter Widmayer
Specific Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 246)

Abstract

Steiner's problem in graphs lies at the very heart of many optimization problems. As the problem is NP-hard, fast and good approximation algorithms are being sought. We discuss some of the most important heuristics. None of these heuristics is superior to any other, neither in terms of speed nor in terms of the quality of the approximate solution. We present and analyze a new algorithm outperforming all of these heuristics in both aspects.

Keywords

Short Path Minimum Span Tree Steiner Tree Priority Queue Steiner Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.V. Aho, J.E. Hopcroft, J.D. Ullman: The design and analysis of computer algorithms, Addison-Wesley, Reading, Mass., 1974.Google Scholar
  2. E.N. Dijkstra: A note on two problems in connection with graphs, Numer. Math.1, 1959, 269–271.CrossRefGoogle Scholar
  3. L.R. Foulds, V.J. Rayward-Smith: Steiner problem in graphs, algorithms and applications, School of Comp. Studies and Accountancy, Univ. East Anglia, Tech. Report, 1983.Google Scholar
  4. M.L. Fredman, R.E. Tarjan: Fibonacci heaps and their uses in improved network optimization algorithms, Ann. Symp. on Foundations of Comp. Science, 1984, 338–346.Google Scholar
  5. E.N. Gilbert, H.O. Pollak: Steiner minimal trees, SIAM J. Appl. Math.16, 1968, 1–29.Google Scholar
  6. R.M. Karp: Reducibility among combinatorial problems, Complexity of computer computations, New York, 1972, 85–103.Google Scholar
  7. L. Kou, G. Markowsky, L. Berman: A fast algorithm for Steiner trees, Acta Informatica15, 1981, 141–145.CrossRefGoogle Scholar
  8. J.B. Kruskal Jr.: On the shortest spanning subtree of a graph and the travelling salesman problem, Proc. Amer. Math. Soc. 78, 1956, 48–50.Google Scholar
  9. H. Mori, T. Fujita, H. Wakata, S. Goto: WIREX: VLSI wiring design expert system, Proc. IFIP VLSI 85, Tokyo, 1985, 297–306.Google Scholar
  10. R.C. Prim: Shortest connection networks and some generalizations, Bell System Tech. J.36, 1957, 1398–1401.Google Scholar
  11. H. Takahashi, A. Matsuyama: An approximate solution for the Steiner problem in graphs, Math. Japonica24, 1980, 573–577.Google Scholar
  12. S.M. Wang: A multiple source algorithm for suboptimum Steiner trees in graphs, Proc. Intl. Workshop Graphtheor. Concepts in Comp. Science, ed. H. Noltemeier, Würzburg, 1985, 387–396.Google Scholar
  13. P. Widmayer: Fast approximation algorithms for Steiner's problem in graphs, Institut für Angewandte Informatik und Formale Beschreibungsverfahren, Universität Karlsruhe, 1986.Google Scholar
  14. P. Widmayer, Y.F. Wu, C.K. Wong: On the approximation of Steiner minimal trees in graphs, Institut für Angewandte Informatik und Formale Beschreibungsverfahren, Universität Karlsruhe, Tech. Report, 1985.Google Scholar
  15. Y.F. Wu, P. Widmayer, C.K. Wong: A faster approximation algorithm for the Steiner problem in graphs, IBM Research Report, 1984, to appear in Acta Informatica.Google Scholar
  16. Y.F. Wu, P. Widmayer, M.D.F. Schlag, C.K. Wong: Rectilinear shortest paths and minimum spanning trees in the presence of rectilinear obstacles, Proc. Intl. Workshop Graphtheor. Concepts in Comp. Science, ed. H. Noltemeier, Würzburg, 1985, 405–420.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Peter Widmayer
    • 1
  1. 1.Institut für Angewandte Informatik und Formale BeschreibungsverfahrenUniversität KarlsruheKarlsruhe

Personalised recommendations