Advertisement

Magic numbers and their origin — Are rigid cores realistic?

  • L. Jansen
  • R. Block
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 269)

Keywords

Free Enthalpy Cluster Size Central Atom Cohesive Energy Magic Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.G. Mayer, Phys. Rev. 74, 235 (1948).CrossRefGoogle Scholar
  2. 2.
    M.G. Mayer, Phys. Rev. 75, 1969 L (1949) (jj-coupling).CrossRefGoogle Scholar
  3. 3.
    O. Aaxel, J.H.D. Jensen, and H.S. Suss, Phys. Rev. 75, 1766 L (1949); also Naturw. 35, 376 (1948), 36, 153, 155 (1949), Phys. Rev. 75, 1766 (1949), Z. Physik 128, 295 (1950).Google Scholar
  4. 4.
    The name “sublimation free enthalpy” is not quite accurate, since the temperature of a cluster falls as it evaporates, i.e. the free-enthalpy distribution changes in a sublimation process.Google Scholar
  5. 5.
    O. Echt, K. Sattler, and E. Recknagel, Phys. Rev. Lett. 47, 1121 (1981).CrossRefGoogle Scholar
  6. 6.
    I.A. Harris, R.S. Kidwell, and J.A. Northby, 17th International Conference on Low Temperature Physics, Karlsruhe 1984 (North-Holland, Amsterdam, 1984).Google Scholar
  7. 7.
    A. Ding and J. Hesslich, Chem. Phys. Lett. 94, 54 (1983).CrossRefGoogle Scholar
  8. 8.
    J.A. Sáenz, J.M. Soler, and N. Garcia, Chem. Phys. Lett. 114, 15 (1985).CrossRefGoogle Scholar
  9. 9.
    D. Kreisle, O. Echt, M. Knapp, and E. Recknagel, Surf. Sci. 156, 321 (1985).CrossRefGoogle Scholar
  10. 10.
    A.L. Mackay, Acta Cryst. 15, 916 (1962).CrossRefGoogle Scholar
  11. 11.
    J. Farges, M.F. de Feraudy, B. Raoult, and G. Torchet, Surf. Sci. 156, 170 (1985).Google Scholar
  12. 12.
    J. Farges, M.F. de Feraudy, B. Raoult, and G. Torchet, J. Chem. Phys. 78, 5067 (1983).CrossRefGoogle Scholar
  13. 13.
    M.R. Hoare and P. Pal, Nature 230, 5 (1972); 236, 35 (1972); Adv. Phys. 20, 161 (1971); J. Cryst. Growth 17, 77 (1972); Adv. Phys. 24, 645 (1975).Google Scholar
  14. 14.
    M.R. Hoare, Adv. Chem. Phys. 40, 49 (1979).Google Scholar
  15. 15.
    Refs 94–96 in Hoare, ref. 12.Google Scholar
  16. 16.
    M.R. Hoare, P. Pal, and P.P. Wegener, J. Colloid Interface Sci. 75, 126 (1980).CrossRefGoogle Scholar
  17. 17.
    D.L. Freeman and J.D. Doll, J. Chem. Phys. 82, 462 (1985).CrossRefGoogle Scholar
  18. 18.
    M.R. Hoare and P. Pal, Adv. Phys. 20, 161 (1971).Google Scholar
  19. 19.
    Reliability of the values for ΔS may be in doubt, however, on the basis of one “representative” cluster at every n replacing an ensemble of structures. Especially for larger clusters, this approximation may be of questionable validity.Google Scholar
  20. 20.
    T. Kihara and S. Koba, J. Phys. Soc. Japan 7, 348 (1952).Google Scholar
  21. 21.
    T. Kihara, Revs. Mod. Phys. 25, 831 (1953).CrossRefGoogle Scholar
  22. 22.
    T.H.K. Barron and S. Domb, Proc. Roy. Soc. (London) A227, 447 (1955).Google Scholar
  23. 23.
    L. Jansen, Phys. Rev. 125, 1798 (1962).CrossRefGoogle Scholar
  24. 24.
    L. Jansen, Phys. Rev. 135, A1292 (1964).CrossRefGoogle Scholar
  25. 25.
    B.M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943).CrossRefGoogle Scholar
  26. 26.
    See, e.g. L. Jansen, Phys. Rev. 110, 661 (1958).CrossRefGoogle Scholar
  27. 27.
    B.M. Axilrod, J. Chem. Phys. 19, 719, 724 (1949).CrossRefGoogle Scholar
  28. 28.
    T. Halicioglu and P.J. White, J. Vacuum Sci. Technol. 17, 1213 (1980).CrossRefGoogle Scholar
  29. 29.
    T. Halicioglu and P.J. White, Surf. Sci. 106, 45 (1981).CrossRefGoogle Scholar
  30. 30.
    I. Oksuz, Surf. Sci. 122, L585 (1982).CrossRefGoogle Scholar
  31. 31.
    I.L. Garzon and E. Blaisten-Barojas, Chem. Phys. Lett. 124, 84 (1986).CrossRefGoogle Scholar
  32. 32.
    L. Jansen, Phys. Rev. 162, 63 (1967).CrossRefGoogle Scholar
  33. 33.
    Since solid neon, argon, krypton, and xenon have the same (face-centered cubic) structure, only the range of β values is of primary importance for relative stability. In addition (see text), ratios of the three-atom interactions, relative to the respective pair contributions in first and second order, are calculated in the model.Google Scholar
  34. 34.
    E. Lombardi and L. Jansen, Phys. Rev. 136, A1011 (1964); 140, A275 (1965); 151, 694 (1966);for a review,see L. Jansen and E. Lombardi, Disc. Faraday Soc. 40, 78 (1965).CrossRefGoogle Scholar
  35. 35.
    E.E. Polymeropoulos, J. Brickmann, L. Jansen, and R. Block, Phys. Rev. A 30, 1593 (1984).CrossRefGoogle Scholar
  36. 36.
    E.E. Polymeropoulos, P. Bopp, J. Brickmann, L. Jansen, and R. Block, Phys. Rev. A 31, 3565 (1985).CrossRefPubMedGoogle Scholar
  37. 37.
    E.E. Polymeropoulos and J. Brickmann, Chem. Phys. Lett. 92, 59 (1982); 96, 273 (1983).CrossRefGoogle Scholar
  38. 38.
    E.E. Polymeropoulos and J. Brickmann, Ber. Bunsenges. Phys. Chem. 87, 1190 (1983).Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • L. Jansen
    • 1
  • R. Block
    • 1
  1. 1.Institute of Theoretical ChemistryUniversity of AmsterdamWV AmsterdamNetherlands

Personalised recommendations