From micro-systems to macro-systems: What size is a metal?

  • G. Mahler
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 269)


Having defined metal as a macroscopic (bulk) system, its minimum size is the size beyond which deviations form the bulk behaviour are no longer detectable. The size therefore depends on the physical property studied as well as on the sensitivity of the experimental apparatus.

We have presented some model treatments of a metallic slab. This system can be characterized by a number of scalar parameters as well as fields. As the slab thickness is varied the scalar parameters generally shift (scaling relations) while the field pattern change in space and time. Nevertheless, at least in the present model the time-pattern (frequency) and the space pattern are still found to be interrelated in terms of a dispersion relation.


Slab Thickness Slab Geometry Fractional Shift Electric Displacement Field Infinite Homogeneous Medium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, e.g., S. K. Ma, 'statistical Mechanics', World Scientific 1985Google Scholar
  2. 2.
    G. Mahler and A. Fourikis, J. Lum. 30 (1986) 18CrossRefGoogle Scholar
  3. 3.
    J. B. Barker and D. K. Ferry, Solid State Electron. 23 (1980) 519; 531; 545CrossRefGoogle Scholar
  4. 4.
    T. Welker and T. P. Martin, J. Chem. Phys. 70 (1979) 5683CrossRefGoogle Scholar
  5. 5.
    M. E. Fisher and M. N. Barker, Phys. Rev. Lett. 28 (1972) 1516CrossRefGoogle Scholar
  6. 6.
    D. M. Wood, Phys. Rev. Lett. 46 (1981) 749CrossRefGoogle Scholar
  7. 7.
    D. J. Chodi, Phys. Rev. Lett. 41 (1978) 1062CrossRefGoogle Scholar
  8. 8.
    J. L. Martins, J. Buttet, and R. Car, Phys. Rev. Lett. 53 (1984) 655CrossRefGoogle Scholar
  9. 9.
    H. Stolz, ‘Einfiihrung in die Vielelektronentheorie der Kristalle', Düsseldorf 1975Google Scholar
  10. 10.
    C. M. Soukulis, J. V. Jose, E. N. Economou, and Ping Shen, Phys. Rev. Lett. 50 (1983) 764CrossRefGoogle Scholar
  11. 11.
    H. P. Balkes and E. R. Hilf, 'spectra of finite systems', Mannheim 1976Google Scholar
  12. 12.
    H. M. Streib, Diplom Thesis, Stuttgart 1983Google Scholar
  13. 13.
    M. J. Kelly and R. J. Nicholas, Rep. Progr. Phys. 48 (1985) 1695Google Scholar
  14. 14.
    E. Heilbronner and H. Bock, ‘Das HMO-Modell und seine Anwendungen', Verlag Chemie 1978Google Scholar
  15. 15.
    W. Teich and G. Mahler, Phys. Stat. Sol(b), to be publ.Google Scholar
  16. 16.
    K. Shimoda (ed.), ‘High Resolution Laser Spectroscopy', Springer 1976Google Scholar
  17. 17.
    A similar situation as found for NMR is discussed by J. S. Ridgen, Rev. mod. Phys. 58 (1986) 433CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • G. Mahler
    • 1
  1. 1.Institut für Theoretische Physik IUniversität StuttgartStuttgart 80Germany

Personalised recommendations