Adatoms and adclusters: On imaging studies by scanning tunneling microscopy

  • Klaus Sattler
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 269)


The scanning tunneling microscope (STM) as a new tool for cluster research is discussed. The imaging of Au and Ag clusters on graphite in air is described and cluster pictures are shown in two operation modes: the constant current and the variable current mode. Images of large (≈ 350Å) and small clusters (a few atoms) are shown. Movement and growth of adatoms and adclusters is observed with the STM on the atomic scale.


Scanning Tunneling Microscope Tunneling Current Scanning Tunneling Microscope Image Graphite Surface Graphite Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Binnig and H. Rohrer, Surf. Sci. 126, 236 (1983)CrossRefGoogle Scholar
  2. 2.
    R. S. Becker, J. A. Golovchenko, E. G. McRae, and B. S. Swartzentruber, Phys. Rev. Lett. 55, 2028 (1985)CrossRefPubMedGoogle Scholar
  3. 2.a
    R. J. Hamers, R. M. Tromp, and J. E. Demuth, Phys. Rev. Lett. 56, 1972 (1986)CrossRefPubMedGoogle Scholar
  4. 3.
    G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982)Google Scholar
  5. 4.
    R. Miranda, N. Garcia, A. M. Baró, R. Gracia, J. L. Pena, H. Rohrer, Appl. Phys. Lett. 47, 367 (1985)Google Scholar
  6. 5.
    S. A. Elrod, A. L. de Lozanne and C. R. Quate, Appl. Phys. Lett. 45, 1240 (1984)CrossRefGoogle Scholar
  7. 6.
    R. V. Coleman, B. Drake, P. K. Hansma and G. Slough, Phys. Rev. Lett. 55, 394 (1985)PubMedGoogle Scholar
  8. 7.
    R. Sonnenfeld and P. K. Hansma, Science, 232, 211 (1986)Google Scholar
  9. 8.
    M. Posternak, A. Baldereschi, A. J. Freeman, E. Wimmer, and M. Weinert, Phys. Rev. Lett. 50, 761 (1983)CrossRefGoogle Scholar
  10. 9.
    Th. Fauster, F. J. Himpsel, J. E. Fischer and E. W. Plummer, Phys. Rev. Lett. 51, 430 (1983)CrossRefGoogle Scholar
  11. 10.
    M. Posternak, A. Baldereschi, A. J. Freeman and E. Wimmer, Phys. Rev. Lett. 52, 863 (1982)CrossRefGoogle Scholar
  12. 11.
    D. W. Abraham, K. Sattler, E. Ganz, H. G. Mamin, R. E. Thomson and J. Clarke, Appl. Phys. Lett., in printGoogle Scholar
  13. 12.
    M. F. Toney and S. C. Fain jr., Phys. Rev. B30, 1115 (1984)Google Scholar
  14. 13.
    G. Binnig, H. Fuchs, Ch. Gerber, H. Rohrer, E. Stoll and E. Tosatti, Europhys. Lett. 1, 31 (1986)Google Scholar
  15. 14.
    K. A. Gingerich, I. Shim, S. K. Gupta and J. E. Kingcade jr., Surf. Sci. 156, 495 (1985)CrossRefGoogle Scholar
  16. 15.
    J. A. Howard and R. Sutcliffe, Surf. Sci. 156, 214 (1985) and references thereinCrossRefGoogle Scholar
  17. 16.
    R. C. Baetzold, J. Chem. Phys. 55, 4363 (1971)CrossRefGoogle Scholar
  18. 17.
    A. B. Anderson, J. Chem. Phys. 68, 1744 (1978)CrossRefGoogle Scholar
  19. 18.
    C. Bachman, J. Demuynck and A. Willard, Faraday Symp. Chem. Soc. 14, 170 (1980)CrossRefGoogle Scholar
  20. 19.
    A. N. Berker, S. Ostlund and F. A. Putnan, Phys. Rev. B17, 3650 (1979)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Klaus Sattler
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeley

Personalised recommendations