Thermal spike model for heavy ion induced desorption

  • I. NoorBatcha
  • Robert R. Lucchese
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 269)


We have seen that the surface thermal spike model of HIID/PDMS can reproduce the linear dependence of ion yield versus LET found by Hakansson et al. [17] at high LET. We have also shown that postdesorption collisions can significantly effect the angular and kinetic energy distributions of the desorbing molecular ions. We might also speculate that the postdesorption collisions could be an important ionization mechanism and could lead to cooling of internal modes of the molecular ions, thus leading to enhanced molecular ions yields compared to those which would be obtained without postdesorption collisions.

At present we are extending these studies by developing a dynamical model for the desorption process so that we can study the competition between energy transfer and desorption in larger molecular systems. In addition we are refining the Monte Carlo simulations by performing two dimensional simulations which consider the dependence of the velocity and density distributions in both the direction normal to the surface and in radial direction normal to the primary ion track.


Linear Energy Transfer Vibrational Excitation Transition State Theory Nuclear Motion Kinetic Energy Distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.D. Macfarlane and D.F. Torgerson, Science 191, 920 (1976).PubMedGoogle Scholar
  2. [2]
    P. Duck, W. Treu, H. Frohlich, W. Galster, and H. Voit, Surf. Sci. 95, 603 (1980).CrossRefGoogle Scholar
  3. [3]
    R.D. Macfarlane, Physica Scripta T6, 110 (1983).Google Scholar
  4. [4]
    G.H. Vineyard, Radiat. Eff. 29, 245 (1976).Google Scholar
  5. [5]
    R.W. Ollerhead, J. Bottiger, J.A. Davies, J. L'Ecuyer, H.K. Haugen, and N. Matsunami, Radiat. Eff. 49, 203 (1980).Google Scholar
  6. [6]
    R.E. Johnson and R. Evatt, Radiat. Eff. 52, 187 (1980).Google Scholar
  7. [7]
    L.E. Seiberling, J.E. Griffith, and T.A. Tombrello, Radiat. Eff. 52, 201 (1980).Google Scholar
  8. [8]
    R.H. Ritchie and C. Claussen, Nucl. Instrum, Methods 198, 133 (1982).Google Scholar
  9. [9]
    M. Urbassek and P. Sigmund, Appl. Phys. A 35, 19 (1984).CrossRefGoogle Scholar
  10. [10]
    R.R. Lucchese, J. Chem. Phys., submitted for publication.Google Scholar
  11. [11]
    P, Williams and B. Sundqvist, Phys. Rev. Lett., submitted for publication.Google Scholar
  12. [12]
    B.V. King, A.R. Ziv, S.H. Lin, and I.S.T. Tsong, J. Chem. Phys. 82, 3641 (1985).CrossRefGoogle Scholar
  13. [13]
    A, Hedin, P. Hakansson, B. Sundqvist, and R.E. Johnson, Phys. Rev. B 31, 1780 (1985).CrossRefGoogle Scholar
  14. [14]
    F.R. Krueger, Surf. Sci. 86, 246 (1979).CrossRefGoogle Scholar
  15. [15]
    H.F. Kammer and E.R. Hilf, Solid State Comm. 58, 465 (1986).CrossRefGoogle Scholar
  16. [16]
    J.F. Ziegler, Stopping Cross-Sections for Energetic Ions in All Elements (Pergamon, New York, 1980) p. 19.Google Scholar
  17. [17]
    P. Hakansson, I. Kamensky, M. Salehpour, B. Sundqvist, and S. Widdiyasekera, Radiat. Eff. 80, 141 (1984).Google Scholar
  18. [18]
    I. NoorBatcha, R.R. Lucchese, and Y, Zeiri, J. Chem. Phys., submitted for publication.Google Scholar
  19. [19]
    P. Hakansson, in Proceedings of the First International Workshop on Physics of Small Systems (Springer, Berlin, 1986).Google Scholar
  20. [20]
    B.T. Chait, Int. J. Mass Spectrom. Ion Phys. 53, 227 (1983).CrossRefGoogle Scholar
  21. [21]
    R.D. Macfarlane, Acc. Chem. Res. 15, 268 (1982).CrossRefGoogle Scholar
  22. [22]
    A, Mozumder, Adv. Radiat. Chem. 1, 1 (1969).Google Scholar
  23. [23]
    R.J. Beuhler, E. Flanigan, L.J. Greene, L. Friedman, J. Am. Chem. Soc. 96, 3990 (1974).CrossRefPubMedGoogle Scholar
  24. [24]
    J.P. Cowin, D.J. Auerbach, C. Becker, and L. Wharton, Surf. Sci. 78, 545 (1978).CrossRefGoogle Scholar
  25. [25]
    C.V. Shank, R. Yen, and C. Hirlimann, Phys. Rev. Lett. 50, 454 (1983).CrossRefGoogle Scholar
  26. [26]
    R.B. Hall and S.J. Bares, in Chemistry and Structure at Interfaces, edited by R.B. Hall and A.B. Ellis (VCH Publishers, Deerfield Beach, 1986) p. 85.Google Scholar
  27. [27]
    W.E. Bron, in Nonequilibrium Phonon Dynamics, edited by W.E. Bron (Plenum Press, New York, 1985) p.l.Google Scholar
  28. [28]
    R.R. Lucchese and J.C. Tully, J. Chem. Phys. 81, 6313 (1984).CrossRefGoogle Scholar
  29. [29]
    R.D. Macfarlane, C.J. McNeal, and C.R. Martin, Anal. Chem. 58, 1091 (1986)CrossRefPubMedGoogle Scholar
  30. [30]
    A. Redondo, Y. Zeiri, and W.A. Goddard III, Phys. Rev. Lett. 49, 1847 (1982).CrossRefGoogle Scholar
  31. [31]
    J.E. Griffith, R.A. Weller, L.E. Seiberling, and T.A. Tombrello, Radiat. Eff. 51, 223 (1980).Google Scholar
  32. [32]
    W.L. Brown, W.M. Augustyniak, E. Brody, B. Cooper, L.J. Lanzerotti, A. Ramirez,R, Evatt, and R.E. Johnson, Nucl. Instrum. Methods 170, 321 (1980).CrossRefGoogle Scholar
  33. [33]
    G.A. Bird, Molecular Gas Dynamics (Clarendon Press, Oxford, 1976).Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • I. NoorBatcha
    • 1
  • Robert R. Lucchese
    • 1
  1. 1.Department of ChemistryTexas A&M UniversityCollege Station

Personalised recommendations