Phase transitions and stationary nonequilibrium states

  • Joaquin Marro
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 268)


Entropy Production Spontaneous Magnetization Nonequilibrium Phase Transition Fast Ionic Conductor Minimum Entropy Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.Arnold and R. Lefever eds., Stochastic Nonlinear Systems, Springer-Verlag, Berlin 1981.Google Scholar
  2. 2.
    M.G. Velarde ed., Nonequilibrium Cooperative Phenomena in Physics and Related Fields,Nato AsiSeries B vol.116, Plenum Press, New York 1984.Google Scholar
  3. 3.
    C. Vidal and A. Pacault eds., Nonequilibrium Dynamics in Chemical Systems, Springer-Verlag, Berlin 1984.Google Scholar
  4. 4.
    W. Horsthemke and D.K.Kondepudi eds., Fluctuations and Sensitivity in Nonequilibrium Systems, Springer-Verlag, Berlin 1984.Google Scholar
  5. 5.
    S.R. de Groot, Thermodynamics of Irreversible Processes, North-Holland, Amsterdam 1951.Google Scholar
  6. 6.
    S.R. de Groot and P. Mazur, Nonequilibrium Thermodynamics, Dover, New York 1984.Google Scholar
  7. 7.
    I. Prigogine, Introduction to Thermodynamics of Irreversible Process, Wiley, New York 1967.Google Scholar
  8. 8.
    R. Kubo, N. Toda and N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics, Springer-Verlag, Berlin 1985.Google Scholar
  9. 9.
    P.L. Garrido and J. Marro, unpublished.Google Scholar
  10. 10.
    J.L. Lebowitz and H.L. Frisch, Phys. Rev. 107,917 (1957).Google Scholar
  11. 11.
    H. Spohn, private communication.Google Scholar
  12. 12.
    J. Masoliver and J. Marro, J.Stat. Phys. 31, 565 (1983).Google Scholar
  13. 13.
    J.Marro and J. Masoliver, J. Phys. C 18,4891 (1985); Phys. Rev. Lett. 54, 731 (1985).Google Scholar
  14. 14.
    F. Mokross and H. Büttner, J.Phys.C 16,4539 (1983).Google Scholar
  15. 15.
    R.J. Glauber, J. Math. Phys. 4, 294 (1963).CrossRefGoogle Scholar
  16. 16.
    P. Glansdorff and I. Prigogine, Physica 20,773 (1954).Google Scholar
  17. 17.
    P. Glansdorff and I. Prigogine, Structure, Instability, and Fluctuations, Wiley, New York 1971.Google Scholar
  18. 18.
    H. Haken, Synergetics, Springer, Berlin 1983; Advanced Synergetics, Springer, Berlin 1983; Laser Theory, Springer, Berlin 1984; Light II Laser Light Dynamics, North-Holland-Elsevier, Amsterdam 1985.Google Scholar
  19. 19.
    R.W. Boyd, M.G. Raymer, L.M. Narducci eds., Optical Instabilities, Cambridge Univ. Press, Cambridge 1986.Google Scholar
  20. 20.
    F. Schlögl, Z. Physik 248,446 (1971); ibid 253,147 (1972).Google Scholar
  21. 21.
    21.G. Nicolis and J.W. Turner, Physica 89A,326 (1977).Google Scholar
  22. 22.
    G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems, Wiley, New York 1977.Google Scholar
  23. 23.
    I. Prigogine and R. Lefever, J. Chem. Phys. 48, 1695 (1968)Google Scholar
  24. 24.
    R.J. Field, J. Chem. Phys. 63,2289 (1975) and references therein.Google Scholar
  25. 25.
    A.M.Zhabotinski, Biofizika 9,306 (1964).Google Scholar
  26. 26. a)
    M. Rosenblatt and C. van Atta eds., Statistical Models and Turbulence, Springer, Berlin 1975.Google Scholar
  27. 27.
    H.L. Swinneyard and J.P. Gollub, Hydrodynamic Instabilities and the Transition to Turbulence, Springer, Berlin 1981.Google Scholar
  28. 28.
    L.P. Kadanoff, J.Stat. Phys. 39,267 (1985).Google Scholar
  29. 29.
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendom Press, Oxford 1961.Google Scholar
  30. 30.
    J. Swift and P.C. Hohenberg, Phys. Rev. A15, 319 (1977).Google Scholar
  31. 31.
    L.E. Reichl, A Modern Course in Statistical Physics, University of Texas Press, Austin 1980.Google Scholar
  32. 32.
    G. Nicolis, G. Dewel and J.W. Turner eds., Order and Fluctuations in Equilibrium and Nonequilibrium Statistical Mechanics, Wiley, New York 1981.Google Scholar
  33. 33.
    E.B. Jacob, H. Brand, G. Dee, L. Kramer and J.S. Langer, Physica 14,348 (1985).Google Scholar
  34. 34.
    S. Katz, J.L. Lebowitz and H. Spohn, Phys. Rev. B 28, 1655 (1983); J. Stat,Phys. 34,497 (1984).Google Scholar
  35. 35.
    J. Marro, J.L. Lebowitz, H. Spohn and M.H. Kalos, J.Stat. Phys. 38,725 (1985).Google Scholar
  36. 36.
    J.L. Vallés and J. Marro, J. Stat. Phys. 43,441 (1986).Google Scholar
  37. 37.
    J. Marro et al., unpublished.Google Scholar
  38. 38.
    W. Dietrich, P. Fulde and I. Peschel, Adv. Phys.29,527 (1980) and references therein.Google Scholar
  39. 39.
    T. Hibma, Solid State Commun. 33,445 (1980).Google Scholar
  40. 40.
    J.B. Bates, J. Wang and N.J. Dudney, Phys. Today, July 1982, p.46.Google Scholar
  41. 41.
    I. Bernasconi et al., Phys.Rev. Lett. 42,819 (1979).Google Scholar
  42. 42.
    H. von Alpen et al., Electrochem. Acta 22, 621 (1977).Google Scholar
  43. 43.
    H. van Beijeren and L.S. Schulman, Phys. Rev. Lett.53, 806 (1984).Google Scholar
  44. 44.
    J.Krug,J.L. Lebowitz, H. Spohn and Q.W. Zhang, unpublished.Google Scholar
  45. 45.
    N. Metropolis et al., J. Chem. Phys. 21,1087 (1953).Google Scholar
  46. 46.
    K. Kawasaki, in Phase Transitions and Critical Phenomena, vol.2, C. Domb and M.S. Green eds., Academic Press, London 1072, pp.443–501.Google Scholar
  47. 47.
    See, for instance, J. Marro and R. Toral, Am.J. Phys., to apper ( Nov 1986–Jan 1987).Google Scholar
  48. 48.
    A. Onuki and K. Kawasaki, Ann. Phys. (N.Y.) 121,456 (1979) ibid 131, 217 (1981).Google Scholar
  49. 49.
    See,for instance, D. Beysens and M. Gbadamassi, Phys. Rev. A 22,2250 (1980).Google Scholar
  50. 50.
    K. Leung and J.L. Cardy, 1986 preprint for J. Stat. Phys.Google Scholar
  51. 51.
    Note that the value reported here for TcAA ( E=∞, π=1 )is s lightly higher than the corresponding value in Ref. [34]1. This is a consequence of the very limited amount of data which was analysed there ( e.g. it concerned to only three temperatures, T/Tceq= 1, 1.07 and 1.21 near TA as compared to 20 values here), and to the fact that it was given there too much weight to the information comming from the structure function and from the occupatio histograms, both affected by most important finite size effects.Google Scholar
  52. 52.
    J.M. González-Miranda, J. Marro and J.L. Vallés, unpublished.Google Scholar
  53. 53.
    K.Binder, Monte-Carlo Methods in Statistical Physics, Springer-Verlag, Berlin 1979; K. Binder, Applications of the Monte Carlo Method in Statistical Physics, Springer-Verlag, Berlin 1984.Google Scholar
  54. 54.
    See, for instance, J. Smeller, Shock-Waves-and Reaction Diffusion Equations, Springer, New York 1983Google Scholar
  55. 55.
    A. de Masi, P. A. Ferrari, and J.L. Lebowitz, Phys. Rev. Lett. 55,1947 (1985). *** DIRECT SUPPORT *** A3418211 00003PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Joaquin Marro
    • 1
  1. 1.Facultad de FísicaUniversidad de BarcelonaBarcelonaSpain

Personalised recommendations