An introduction to pattern formation in nonequilibrium systems

  • P. C. Hohenberg
  • M. C. Cross
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 268)


Patterns which arise in various nonequilibrium systems are discussed from an elementary but unified point of view. The phenomena of interest range from hydrodynamic flows (Rayleigh- Benard convection, Taylor-Couette flow, parametric waves) to chemical instabilities and morphogenesis in biological systems. A unifying feature is provided by linear stability theory which leads to a classification of patterns depending on the spatial and temporal scales of the instability. Near the instability point a universal amplitude equation is derived and used to elucidate many elementary properties of the system. The simplest solutions of this equation, which we call ideal patterns, are those with maximal symmetry. Some of their properties can be described also away from threshold by means of phase equations or more abstractly in terms of topological concepts. Real patterns, which we consider next, differ from ideal ones through the influence of boundaries and the loss of symmetry caused by spatial disorder. The simplest example of spatial disorder is a single defect in an otherwise regular pattern. Our treatment of real patterns focuses almost exclusively on Rayleigh-Benard convection since this is by far the most studied system. The importance of boundaries and defects is illustrated in the study of wavevector selection and in the description of pattern dynamics near threshold. Numerical and analytical studies of model equations have proved useful in the exploration of these difficult problems, but our present level of understanding is still far from complete.


Rayleigh Number Pattern Formation Linear Instability Amplitude Equation Taylor Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See Cellular Structures in Instabilities, J. E. Wesfreid and S. Zaleski Eds., Lecture Notes in Physics Vol. 210, Springer-Verlag, 1984.Google Scholar
  2. 2.
    See Hydrodynamic Instabilities and the Transition to Turbulence, H. L. Swinney and J. P. Gollub Eds., Topics in Applied Physics Vol. 45, Springer-Verlag, 1981.Google Scholar
  3. 3.
    See Chemical Instabilities-Applications in Chemistry, Engineering, Geology and Materials Science, G. Nicolis and F. Barras Eds., Reidel Doordrecht, 1984; C. Vidal and A. Pacault, in Evolution of Order and Choas in Physics, Chemistry and Biology, Synergetics Vol. 17, H. Haken Ed. Springer-Verlag 1982; Oscillations and Traveling Waves in Chemical Systems, R. J. Field and M. Burger, Eds., Wiley, NY, 1985.Google Scholar
  4. 4.
    See Pattern Formation-A Primer in Developmental Biology, G. M. Malacinski and S. V. Bryant, Eds., Macmillan, NY, 1984; H. Meinhardt Models of Biological Pattern Formation, Academic, London, 1982; L. A. Segel, Modeling Dynamics Phenomena in Molecular and Cellular Biology, Cambridge University Press, 1984.Google Scholar
  5. 5.
    See F. H. Busse, Rept. Prog. Phys. 41, 1929 (1978).Google Scholar
  6. 6.
    F. H. Busse and N. Riahi, J. Fluid Mech. 96, 243 (1980); M.R.E. Proctor, J. Fluid Mech. 113, 469 (1981); V. L. Gertsberg and G. I. Sivashinsky, Prog. Theor. Phys. 66, 1219 (1981).Google Scholar
  7. 7.
    J. C. Platten and J. Legros, Convection in Liquids, Springer-Verlag 1984, Ch. IX; H. Brand, P. C. Hohenberg and V. Steinberg, Phys. Rev. A30, 2584 (1984), and references therein.Google Scholar
  8. 8.
    See the article by R. C. DiPrima and H. L. Swinney in Ref. 2.Google Scholar
  9. 9.
    See L. D. Landau and E. M. Lifshitz, Mechanics, Ch. V, Pergamon, NY, 1976.Google Scholar
  10. 10.
    S. Ciliberto and J. P. Gollub, Phys. Rev. Lett. 52, 922 (1984).Google Scholar
  11. 11.
    A. B. Ezerskii, P. I. Korotin, and M. I. Rabinovich, JETP Lett. 41, 157 (1985).Google Scholar
  12. 12.
    H. Suhl, J. Phys. Chem. Solids 1, 209 (1957); P. Gottlieb and H. Suhl, J. Appl. Phys. 33, 1508 (1962).Google Scholar
  13. 13.
    A. M. Turing, Phil. Trans. R. Soc. Lond. B237, 37 (1952).Google Scholar
  14. 14.
    P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics, Vol. 28 Springer-Verlag, 1979; J. D. Murray, Nonlinear Differential Equation Models in Biology, Clarendon Press, Oxford, 1977.Google Scholar
  15. 15.
    R. Aris, Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Clarendon Press, Oxford, 1975.Google Scholar
  16. 16.
    A. C. Newell and J. A. Whitehead, J. Fluid Mech. 38, 279 (1969); L. A. Segel, J. Fluid Mech. 38, 203 (1969).Google Scholar
  17. 17.
    L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, Third Edition, Pergamon, NY, 1980, Ch. 14.Google Scholar
  18. 18.
    G. Ahlers, M. C. Cross, P. C. Hohenberg and S. Safran, J. Fluid Mech. 110, 297 (1981).Google Scholar
  19. 19.
    19. See, for example, P. Coullet, S. Fauve and E. Tirapegui, J. Physique Lett. 46, L–87 (1985).Google Scholar
  20. 20.
    T. B. Benjamin and J. E. Feir, J. Fluid Mech. 27, 417 (1967).Google Scholar
  21. 21.
    Y. Pomeau and P. Manneville, J. Phys. (Paris) 42, 1067 (1981).Google Scholar
  22. 22.
    M. C. Cross and A. Newell, Physica 10D, 299 (1984).Google Scholar
  23. 23.
    E. W. Bolton, F. H. Busse and R. M. Clever, J. Fluid Mech. 164, 469 (1986).Google Scholar
  24. 24.
    A. T. Winfree, Physica 12D, 321 (1984).Google Scholar
  25. 25.
    L. N. Howard and N. Kopell, Stud. Appl. Math. 64, 1 (1981).Google Scholar
  26. 26.
    J. Swift and P. C. Hohenberg, Phys. Rev. A15, 319 (1977); Y. Pomeau and P. Manneville, Phys. Lett. 75A, 296 (1980).Google Scholar
  27. 27.
    L. Kramer and P. C. Hohenberg, Physica 13D, 357 (1984).Google Scholar
  28. 28.
    H. Greenside and M. C. Cross, Phys. Rev. A31, 2492 (1985).Google Scholar
  29. 29.
    L. Kramer, E. Ben-Jacob, H. Brand and M. C. Cross, Phys. Rev. Lett. 49, 1891 (1982); P. C. Hohenberg, L. Kramer and H. Riecke, Physica 15D, 402 (1985).Google Scholar
  30. 30.
    (a)Y. Kuramoto, Prog. Theor. Phys. (Kyoto) Supp. 64, 346 1978; Prog. Theor. Phys. (Kyoto) 71, 1182 (1984); (b) G. 1. Sivashinsky, Acta Astronautica 6, 569 (1979).Google Scholar
  31. 31.
    G. Ahlers, D. S. Cannell and V. Steinberg, Phys. Rev. Lett. 54, 1373 (1985).PubMedGoogle Scholar
  32. 32.
    A. Pocheau and V. Croquette, J. Physique (Paris) 45, 35 (1984).Google Scholar
  33. 33.
    J. P. Gollub, A. R. McCarriar and J. F. Steinman, J. Fluid Mech. 125, 259 (1982).Google Scholar
  34. 34.
    P. Le Gal, These, Univ. Paris-Sud, 1986.Google Scholar
  35. 35.
    J. D. Murray, Phil. Trans. R. Soc. Lond. B 295, 473 (1981).Google Scholar
  36. 36.
    Y. M. Treve and O. P. Manley, Physica 4D, 319 (1982); see Fluid Mech. 150, 427 (1985).Google Scholar
  37. 37.
    J. P. Eckmann, Rev. Mod. Phys. 53, 643 (1981); The Physics of Chaos and Related Problems: Proceedings of the 59th Nobel Symposium, 1984, S. Lundquist, Ed., Physica Scripta T9, 1 (1985).CrossRefGoogle Scholar
  38. 38.
    J. Maurer and A. Libchaber, J. Physique (Paris) Lett. 40, L–419 (1979); J. G. Gollub and S. V. Benson, J. Fluid Mech. 100, 449 (1980); J. Stavans, F. Heslot and A. Libchaber, Phys. Rev. Lett. 55, 596 (1985).Google Scholar
  39. 39.
    M. C. Cross, P. G. Daniels, P. C. Hohenberg and E. D. Siggia, J. Fluid Mech. 127, 155 (1983).Google Scholar
  40. 40.
    M. C. Cross, Phys. Rev. A25, 1065 (1982).Google Scholar
  41. 41.
    H. Greenside and W. M. Coughran, Jr., Phys. Rev. A30, 398 (1984).Google Scholar
  42. 42.
    E. D. Siggia and A. Zippelius, Phys. Rev. A24, 1036 (1981).Google Scholar
  43. 43.
    G. Tesauro and M. C. Cross, Phys. Rev. A (to be published); Phil. Mag. A (to be published).Google Scholar
  44. 44.
    E. L. Koschmieder, Adv. Chem. Phys. 26, 177 (1974).Google Scholar
  45. 45.
    P. Kolodner, R. W. Walden, A. Passner and C. M. Surko, J. Fluid Mech. 163, 195 (1986).Google Scholar
  46. 46.
    D. S. Cannell, M. A. Dominguez-Lerma and G. Ahlers, Phys. Rev. Lett. 50, 1365 (1983); G. Ahlers, D.S. Cannell and M. A. Dominguez-Lerma, Physica 16D xxx(1986).Google Scholar
  47. 47.
    M. C. Cross, G. Tesauro and H. Greenside, Physica D (to be published).Google Scholar
  48. 48.
    J. C. Buell and I. Catton, J. Fluid Mech. (1986) (to be published).Google Scholar
  49. 49.
    Y. Pomeau and P. Manneville, J. Phys. (Paris) 42, 1067 (1981).Google Scholar
  50. 50.
    J. C. Buell and I. Catton, Phys. Fluids 29, 23 (1986).Google Scholar
  51. 51.
    G. Dee and J. S. Langer Phys. Rev. Lett 50, 383 (1983); E. Ben-Jacob, H. Brand, G. Dee, L. Kramer and J. S. Langer, Physica 14D, 348 (1985).Google Scholar
  52. 52.
    G. Ahlers and R. P. Behringer, Prog. Theor. Phys. (Kyoto) Supp. 64, 186 (1978).Google Scholar
  53. 53.
    M. S. Heutmaker and J. P. Gollub, Physica D (to be published); Phys. Rev. A. (to be published).Google Scholar
  54. 54.
    P. Manneville, Phys. Lett. 84A, 129 (1981); Y. Pomeau, A. Pumir and P. Pelce, J. Stat. Phys. 37, 39 (1984); A. Pumir, J. Physique (Paris) 46, 511 (1985).Google Scholar
  55. 55.
    U. Frisch, S. Che and O. Thual in Macroscopic Modeling of Turbulent Flows, U. Frisch, Ed., Springer-Verlag, 1985.Google Scholar
  56. 56.
    B. Shraiman, Phys. Rev. Lett. 57, 325 (1986).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • P. C. Hohenberg
    • 1
  • M. C. Cross
    • 2
  1. 1.AT&T Bell LaboratoriesMurray Hill
  2. 2.California Institute of TechnologyPasadena

Personalised recommendations