Quantum mechanical chaos criteria for a kicked top

  • Fritz Haake
  • Marek Kuś
  • Rainer Scharf
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 268)


We investigate the quantum counterpart of the classically chaotic motion of a top. The squared angular momentum is conserved and the motion therefore takes place in a finite dimensional Hilbert space with a quasiperiod of the order of the length of the angular momentum. Surprisingly, we find a distinction between regular and irregular behavior of quantum expectation values even for times exceeding the quasi-period. A spectral analysis reveals the regular motion as a quantum beat phenomenon and the irregular one as broad-band excitation of eigenmodes. Finally, chaos is reflected in level repulsion the degree of which depends on whether or not we endow the top with a generalized antiunitary time reversal invariance.


Chaotic Region Regular Motion Quantum Chaos Time Reversal Invariance Stability Island 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Haake, M. Kuś, and R. Scharf “Classical and Quantum Chaos for a Kicked Top”, Z. f. Physik, to be published.Google Scholar
  2. 2.
    T. Hogg and B. A. Huberman, Phys. Rev. Lett. 48, 711 (1982).Google Scholar
  3. 3.
    S. McDonald and A. N. Kaufman, Phys. Rev. Lett. 42, 1189 (1979).Google Scholar
  4. 4.
    O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52, 1 (1984).Google Scholar
  5. 5.
    E. Haller, H. Köppel, and L. S. Cederbaum, Phys. Rev. Lett. 52, 1165 (1984).Google Scholar
  6. 6.
    T. H. Seligman and J. J. M. Verbaarschot, Phys. Lett. 108A, 183 (1985).Google Scholar
  7. 7.
    M. V. Berry and M. Tabor, Proc. Roy. Soc., London A356, 375 (1977).Google Scholar
  8. 8.
    H. Frahm and H. J. Mikeska, Z. Phys. B60, 117 (1985).Google Scholar
  9. 9.
    F. T. Arecchi, E. Courtens, and R. Gilmore, H. Thomas, Phys. Rev. A6, 2211 (1972).Google Scholar
  10. 10.
    R. J. Glauber and F. Haake, Phys. Rev. A13, 357 (1976).Google Scholar
  11. 11.
    R. DeVogelaere in Contributions to the Theory of Nonlinear Oscillations IV, Princeton University Press, (1958).Google Scholar
  12. 12.
    R. S. McKay “Renormalization in Area Preserving Maps”, Ph. D. thesis, Princeton (1982).Google Scholar
  13. 13.
    J. H. Eberly and N. B. Narozhny, J. J. Sanchez-Mondragon, Phys. Rev. Lett. 44, 1323 (1980).Google Scholar
  14. 14.
    M. Feingold, S. Fishman, D. R. Grempel, and R. E. Prange, Phys. Rev. B31, 6852 (1985).Google Scholar
  15. 15.
    P. Pechukas, Phys. Rev. Lett. 51, 943 (1983).Google Scholar
  16. 16.
    T. Yukawa, Phys. Rev. Lett. 54, 1883 (1985).PubMedGoogle Scholar
  17. 17.
    F. J. Dyson, J. Math. Phys. 3, 140 157, 166 (1962).Google Scholar
  18. 18.
    C. E. Porter in Statistical Theories of Spectra, Academic Press, New York, (1965).Google Scholar
  19. 19.
    M. Robnik, M. V. Berry, J. Phys. A19, 669 (1986).Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Fritz Haake
    • 1
  • Marek Kuś
    • 1
  • Rainer Scharf
    • 1
  1. 1.Fachbereich PhysikUniversität-Gesamthochschule EssenEssenDeutschland

Personalised recommendations