Advertisement

Macroscopic potentials, bifurcations and noise in dissipative systems

  • R. Graham
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 268)

Abstract

A review is presented of recent work dealing with dissipative dynamical systems weakly perturbed by noise. A free-energy like macroscopic nonequilibrium potential is defined for such systems which determines the stability and mean life-times of the systems' attractors. General properties of the nonequilibrium potential are discussed along with selected applications such as noise in Josephson junctions, in systems near bifurcation points of codimension two, and in systems described by the strange attractor of the Lorenz model.

Keywords

Unstable Manifold Josephson Junction Stable Manifold Fokker Planck Equation Strange Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refferences

  1. 1.
    R.L. Stratonovich, Topics in the Theory of Random Noise, Vol. I, II, Gordon and Breach, New York 1963.Google Scholar
  2. 2.
    H.Haken, Synergetics, Springer, Berlin 1977; Advanced Synergetics, Springer, Berlin 1983Google Scholar
  3. 3.
    Z. Schuss, Theory and Applications of Stochastic Differential Equation, John Wiley, New York 1980.Google Scholar
  4. 4.
    N. van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam 1981.Google Scholar
  5. 5.
    C. Gardiner, Handbook of Stochastic Methods, Springer, Berlin 1983.Google Scholar
  6. 6.
    P. Hänggi, H. Thomas, Phys. Rep. 88, 207 (1982)Google Scholar
  7. 7.
    H. Risken, The Fokker Planck Equation, Springer, Berlin 1984.Google Scholar
  8. 8.
    A.J. Lichtenberg, M.A. Lieberman, Regular and Stochastic Motion, Springer, Berlin 1983.Google Scholar
  9. 9.
    J. Guckenheimer, Ph. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, Berlin 1983.Google Scholar
  10. 10.
    S.R. de Groot, P. Mazur, Non-equilibrium Thermodynamics, North-Holland, Amsterdam 1962.Google Scholar
  11. 11.
    L.D. Landau, E.M. Lifshitz, Statistical Physics, Pergamon, Oxford 1958.Google Scholar
  12. 12.
    R. Graham, in Coherence and Quantum Optics, ed. L. Mandel and E. Wolf, Plenum, New York 1973; in Quantum Statistics and Solid-State Physics, Vol. 66 of Springer Tracts in Modern Physics, ed. G. Hbhler, Springer, Berlin 1973; in Fluctuations, Instabilities and Phase Transitions, ed. T. Riste, Plenum, New York 1975; in Stochastic Processes in Nonequilibrium Systems, ed. L. Garrido, P. Seglar and P.J. Shephard, Springer, Berlin 1978; in Stochastic Nonlinear Systems, ed. L. Arnold, R. Lefever, Springer, New York 1981.Google Scholar
  13. 13.
    M.S. Green, J. Chem. Phys. 20, 1281 (1952).CrossRefGoogle Scholar
  14. 14.
    R. Graham, Z. Physik B26, 397 (1977).Google Scholar
  15. 15.
    H. Grabert, R. Graham, M.S. Green, Phys. Rev. A21, 2136 (1980).Google Scholar
  16. 16.
    A. Einstein, Ann. Physik 17, 549 (1905); 19, 371 (1906).Google Scholar
  17. 17.
    L. Onsager, Phys. Rev. 37, 405 (1931); 38, 2265 (1931).Google Scholar
  18. 18.
    E.B. Dynkin, Markov Processes I, II, Springer, Berlin 1965.Google Scholar
  19. 19.
    B.J. Matkowsky, Z. Schuss, SIAM J. Appl. Math. 33, 365 (1977); 36, 43 (1979); 42, 822 (1982); Phys. Lett. 95A, 213 (1983).Google Scholar
  20. 20.
    H. Haken, Phys. Rev. Lett. 13 329 (1964); Z. Physik 181, 96 (1964); Z. Physik 219, 246 (1969).Google Scholar
  21. 21.
    R. Graham, H. Haken, Z. Physik 243, 289 (1971); 245, 141 (1971).Google Scholar
  22. 22.
    R. Kubo, K. Matsuo, K. Kitahara, J. Stat. Phys. 9, 51 (1973).Google Scholar
  23. 23.
    K. Tomita, H. Tomita, Progr. Theor. Phys. 51, 1731 (1974).Google Scholar
  24. 24.
    K. Kitahara, Adv. Chem. Phys. 29, 85 (1975).Google Scholar
  25. 25.
    J.K. Cohen, R.M. Lewis, J. Inst. Math. Appl. 3, 266 (1967).Google Scholar
  26. 26.
    A.D. Ventzel, M.I. Freidlin, Uspekhi Mat. Nauk. 25, 3 (1970).Google Scholar
  27. 27.
    M.I. Freidlin, A.D. Ventzel, Random Perturbations of Dynamical Systems, Springer, Berlin 1984.Google Scholar
  28. 28.
    D. Ludwig, Stochastic Population Theories, Springer, Berlin 1974.Google Scholar
  29. 29.
    D. Ludwig, SIAM Rev. 17, 4 (1975).Google Scholar
  30. 30.
    L.D. Landau, E.M. Lifshitz, Mechanics, Pergamon, Oxford 1958.Google Scholar
  31. 31.
    R. Graham, T. Tél, Phys. Rev. Lett. 52, 9 (1984).Google Scholar
  32. 32.
    R. Graham, T. Tél, J. Stat. Phys. 35, 729 (1984); 37, 709 (1984) (Addendum).Google Scholar
  33. 33.
    R. Graham, T. Tél, Phys. Rev. A31, 1109 (1985).Google Scholar
  34. 34.
    R. Graham, D. Roekaerts, T. Tél, Phys. Rev. A31, 3364 (1985).Google Scholar
  35. 35.
    R. Graham, T. Tél, Phys. Rev. A33, 1322 (1985).Google Scholar
  36. 36.
    H.R. Jauslin, J. Stat. Phys. 42, 573 (1986).Google Scholar
  37. 37.
    R. Graham, in Complex Systems, Operational Approaches in Neurobiology, Physics, and Computers, ed. H. Haken, Springer, Berlin 1985.Google Scholar
  38. 38.
    R. Graham, T. Tél, in Proceedings of the BiBoS-Symposium 'Stochastic Processes-Mathematics and Physics' Bielefeld 1985, Lecture Notes in Mathematics, Springer, Berlin, to be publishedGoogle Scholar
  39. 39.
    J. Hietarinta, J. Math. Phys. 26, 1970 (1985).Google Scholar
  40. 40.
    D. Roekaerts, F. Schwartz, to be published.Google Scholar
  41. 41.
    R. Graham, Z. Physik B26, 281 (1977); U. Deininghaus, R. Graham, Z. Physik B34, 211 (1979).Google Scholar
  42. 42.
    H. Dekker, Phys. Rev. A24, 3182 (1981).Google Scholar
  43. 43.
    F. Langouche, D. Roekaerts, E. Tirapegui, Functional Integration and Semiclassical Expansions, Reidel, Dordrecht 1982.Google Scholar
  44. 44.
    B.D. Josephson, Phys. Lett. 1, 251 (1962).Google Scholar
  45. 45.
    C.P.L. Solymar, Superconductive Tunneling and Application, Chapman and Hall, London 1972.Google Scholar
  46. 46.
    E. Ben-Jacob, D.J. Bergmann, B.J. Matkowsky, Schuss, Phys. Rev. A26, 2805 (1982).Google Scholar
  47. 47.
    R. Graham, T. Tél, to be published.Google Scholar
  48. 48.
    H.R. Brand, V. Steinberg, Phys. Lett. 93A, 333 (1983).Google Scholar
  49. 49.
    H.R. Brand, P.C. Hohenberg, V. Steinberg, Phys. Rev. A27, 591 (1983); A30, 2548 (1984).Google Scholar
  50. 50.
    I. Rehberg, G. Ahlers, Phys. Rev. Lett. 55,500 (1985).PubMedGoogle Scholar
  51. 51.
    A. Wunderlin, H. Haken, Z. Phys. B44, 135 (1981).Google Scholar
  52. 52.
    E. Knobloch, K.A. Wiesenfeld, J. Stat. Phys. 33, 611 (1983).Google Scholar
  53. 53.
    R. Graham, to be published.Google Scholar
  54. 54.
    E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963).Google Scholar
  55. 55.
    C. Sparrow, The Lorenz Equations: Bifurcations, Chaos and Strange Attractors, Springer, Berlin 1982.Google Scholar
  56. 56.
    H. Haken, Phys. Lett. A53, 77 (1975).Google Scholar
  57. 57.
    W. Klische, C.O. Weiss, Phys. Rev. A31, 4049 (1985).Google Scholar
  58. 58.
    M. Dörfle, R. Graham, Phys. Rev. A27, 1096 (1983).Google Scholar
  59. 59.
    R. Graham, Phys. Rev. Lett. 53, 2020 (1984).Google Scholar
  60. 60.
    R. Graham, H.J. Scholz, Phys Rev. A22, 1198 (1980).Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • R. Graham
    • 1
  1. 1.Fachbereich PhysikUniversität GHSEssenW. Germany

Personalised recommendations