X-ray spectral formation in low mass X-ray binaries

  • N. E. White
Spectral Formation
Part of the Lecture Notes in Physics book series (LNP, volume 266)


The spectral properties of the non-pulsing low mass X-ray binaries, LMXRB, are reviewed using recent EXOSAT observations. The spectra of the persistent emission from a sample of the lower luminosity, 1037 erg/s systems (usually X-ray burst sources),are well modelled by a simple power law attenuated at high energies by an exponential cutoff. Their spectra do not show a strong dependence on inclination. The higher luminosity 1038 erg/s systems require an additional blackbody component, whose luminosity ranges from 10 to 40% the total. Various models for the inner region of an accretion disk and its interaction with a neutron star are considered. Blackbody disk models are not appropriate in this case because of the effects of electron scattering. A modified blackbody disk model does not have the correct spectral shape to reproduce the spectra from the lower luminosity sources. It does give a reasonable fit to the spectra of the higher luminosity systems, however the inferred mass transfer rates exceed the Eddington limit by a factor of 3 or more, and are implausibly large. A model where the disk spectrum results from the Comptonization of soft photons on hot electrons gives a consistent fit to the spectra of both luminosity classes. In the higher luminosity systems a second blackbody component, probably from the boundary layer is also required. This blackbody component is absent in the lower luminosity systems, suggesting they contain neutron stars that have been spun up to sub-millisecond periods.


Neutron Star Accretion Disk Disk Model High Luminosity Lower Luminosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Canizares, C.R., et al. 1975. Ap.J. 197, 457.Google Scholar
  2. Chodil, G., et al 1968, Ap.J., 154, 645.Google Scholar
  3. Czerny, B., Czerny, M. and Grindlay, J.E. 1986. Ap.J. in the press.Google Scholar
  4. Eardley, D.M., Lightman, A.P., Payne, D.C., and Shapiro, S.L. 1978, Ap.J. 224, 53.Google Scholar
  5. Friedman, J.L., Ipser, J.R. and Parker, L. 1984. Nature, 312, 255.Google Scholar
  6. Ilovaisky, S.A., Chevalier, C., White, N.E., Mason, K.O., Sanford, P.W., Delvaille, J., and Schnopper, H.W. 1980, Ap.J., 191, 81.Google Scholar
  7. Kulkarni, S.R., 1986, Ap.J., 306, L85.Google Scholar
  8. Lamb, F.K. 1986. in in The Evolution of X-ray Binaries, [Reidel:ed. J. Truemper, W.H.G. Lewin and W. Brinkman]. page 151.Google Scholar
  9. Lewin, W.H.G. 1987. these proceedings.Google Scholar
  10. Mason, K.O. 1987. these proceedings.Google Scholar
  11. Mason, K.O., Charles, P.A., White, N.E., Culhane, J.L., Sanford, P.W., and Strong, K.T., 1976. M.N.R.A.S., 177, 513.Google Scholar
  12. Middleditch, J. and Priedhorsky, W.C. 1986, 306, 230.Google Scholar
  13. Mitsuda, K. et al 1984, P.A.S.J., 36, 741.Google Scholar
  14. Neugebauer, G., Oke, J.B., Becklin, E., and Garmire, G. 1969. Ap.J., 155, 1.Google Scholar
  15. Papaloizou, J. and Pringle, J.E. 1978. M.N.R.A.S., 184, 501.Google Scholar
  16. Parmar, A.N., White, N.E., Giommi, P. and Gottwald, M. 1986, Ap.J. in press.Google Scholar
  17. Priedhorsky, W.C. 1986, Ap.J. 306, L97.Google Scholar
  18. Rappaport, S.A., Verbunt, F. and Joss, P.C. 1983. Ap.J. 275, 713.Google Scholar
  19. Shapiro, S.L., Lightman, A.P. and Eardley, D.M. 1976, Ap.J., 204,187.Google Scholar
  20. Shakura, N.I. and Sunyaev, R.A. 1973, Astr.Ap., 24, 337.Google Scholar
  21. Stella, L. and Rosner, R. 1984. Ap.J., 277, 312.Google Scholar
  22. Stella, L., White, N.E. and Priedhorsky, W.C., 1987. Ap.J., in press.Google Scholar
  23. Sunyaev, R.A., and Titarchuk, L.G., 1980, Astr. Ap. 86, 121.Google Scholar
  24. Sunyaev, R.A., and Trumper, J. 1979, Nature, 279, 506.Google Scholar
  25. Swank, J. and Serlemitsos, P.J. 1985. in Galactic and Extragalactic Compact X-ray Sources [ISAS:ed. Y. Tanaka and W.H.G. Lewin]. page 175.Google Scholar
  26. Terrell, J. and Priedhorsky, W.C. 1984. Ap.J., 285, L15.Google Scholar
  27. van den Heuvel, E.P.J., van Paradijs, and Taam, R.E., 1986. Nature, 322, 153.Google Scholar
  28. van der Klis, M.K. 1987, these proceedings.Google Scholar
  29. van der Klis, M.K., Stella, L., White, N., Jansen, F. and Parmar, A.N. 1987. Ap.J. in press.Google Scholar
  30. Webbink, R.F., Rappaport, S.A. and Savonije, G.J. 1983, Ap.J. 270, 678.Google Scholar
  31. White, N.E., 1985. in The Evolution of X-ray Binaries, [Reidel:ed. J. Truemper, W.H.G. Lewin and W. Brinkman]. page 227.Google Scholar
  32. White, N.E. and Mason, K.O. 1985. Sp. Sci. Rev. 40, 167.Google Scholar
  33. White, N.E., Peacock, A. and Taylor, B.G. 1985. Ap.J. 296, 475.Google Scholar
  34. White, N.E., Peacock, A., Hasinger, G., Mason, K.O., Manzo, G., Taylor, B.G., and Branduardi-Raymont, G. 1986. M.N.R.A.S., 218, 129.Google Scholar
  35. White, N.E., Stella, L. and Parmar, A.N. 1987 in preperation. *** DIRECT SUPPORT *** A0124046 00007Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • N. E. White
    • 1
  1. 1.EXOSAT Observatory/ESOCDarmstadtW. Germany

Personalised recommendations