Advertisement

Indirect imaging of accretion disks in binaries

  • Keith Horne
  • T. R. Marsh
Accretion Disks
Part of the Lecture Notes in Physics book series (LNP, volume 266)

Abstract

We review two indirect imaging techniques that are now being used to form spatially-resolved images of accretion disks in mass-transfer binaries, mainly the cataclysmic variable stars. The eclipse mapping method reconstructs the continuum brightness distribution on the surface of a disk from the shape of the light curve during eclipses of the disk by the secondary star. Doppler tomography uses emission line velocity profiles observed over the full range of binary phases to recover the line emissivity distribution in a 2-dimensional velocity space. The doppler tomogram may be interpreted directly in velocity space or transformed to a spatial image of the disk with the assumption of a Keplerian flow. We use the maximum entropy method with default level steering to adjust the disk images.

Keywords

Light Curve Line Profile Accretion Disk Maximum Entropy Method Accretion Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey J., 1979 M.N.R.A.S., 187 645.Google Scholar
  2. Bath G.T. Edwards,A.C. & Mantle,V.J., 1983, in IAU Colloquium 72, Cataclysmic Variables and Related Objects, ed. M.Livio & G.Shaviv (Dordrecht:D.Reidel), p 55.Google Scholar
  3. Bracewell R.N., 1956 Aust.J.Phys. 9, 198.Google Scholar
  4. Bryan R.K. & Skilling J., 1980 M.N.R.A.S., 191, 69.Google Scholar
  5. Cook M.C. & Warner B., 1984 M.N.R.A.S., 207 705.Google Scholar
  6. Horne K., 1985 M.N.R.A.S., 213, 129.Google Scholar
  7. Horne K & Cook M.C., 1985 M.N.R.A.S., 214, 307.Google Scholar
  8. Horne K. & Marsh T.R., 1986 M.N.R.A.S., 218, 761.Google Scholar
  9. Horne K. & Stiening R.F., 1985 M.N.R.A.S., 216, 933.Google Scholar
  10. Horne K., Wood J. & Stiening R.F., 1986 Astrophys. J.,, in preparation.Google Scholar
  11. Huang S., 1972 Astrophys. J., 171, 549.Google Scholar
  12. Livio M., Soker N. & Dgani R., 1986 Astrophys. J., 305, 267.Google Scholar
  13. Marsh T.R., 1985 Ph.D. thesis, University of Cambridge, England.Google Scholar
  14. Marsh T.R. & Horne K., 1986 M.N.R.A.S.,, in preparation.Google Scholar
  15. Mochnacki S.W., 1971 M.S. thesis, University of Canterbury, New Zealand.Google Scholar
  16. Mochnacki S.W. & Doughty N.A., 1972 M.N.R.A.S., 156, 51.Google Scholar
  17. Narayan R. & Nityananda R., 1986 Annu. Rev. Astr. Ap., 24, 127.Google Scholar
  18. Parker R.L., 1977 Annu.Rev.Earth Planet.Sci., 5, 35.Google Scholar
  19. Rowland, 1979 in Topics in Applied Physics 32, Image Reconstruction from Projections, ed. G.T.Herman (Springer-Verlag).Google Scholar
  20. Shafter A. W. & Szkody P., 1984 Astrophys. J., 276, 305.Google Scholar
  21. Skilling J. & Bryan R.K., 1984 M.N.R.A.S., 211, 111.Google Scholar
  22. Smak J., 1969 Acta Astron., 19, 155.Google Scholar
  23. Smak J., 1981 Acta Astron., 31, 395.Google Scholar
  24. Smak J., 1985 Acta Astron., 35, 351.Google Scholar
  25. Tylenda R., 1981 Acta Astron., 31, 127.Google Scholar
  26. Williams R.E., 1980 Astrophys. J., 235, 939.Google Scholar
  27. Wood J.H., Horne K.D., Berriman G., Wade R., O'Donoghue D & Warner B., 1986 M.N.R.A.S., 219, 629.Google Scholar
  28. Wood J.H., Horne K.D., Berriman G. & Wade R., 1987 M.N.R.A.S.,, in preparation.Google Scholar
  29. Young P. & Schneider D.P., 1980 Astrophys. J., 238, 955.Google Scholar
  30. Young P., Schneider D.P. & Shectman, S.A., 1980 Astrophys. J., 245, 1035.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Keith Horne
    • 1
  • T. R. Marsh
    • 2
  1. 1.Space Telescope Science InstituteBaltimoreUSA
  2. 2.Royal Greenwich ObservatoryHerstmonceaux CastleHailshamUK

Personalised recommendations