Skip to main content

Modelling large bases of categorical data with acyclic schemes

Contributed Papers

Part of the Lecture Notes in Computer Science book series (LNCS,volume 243)

Abstract

The design and the implementation of a large base of categorical data raise several problems: storage requirements, performance of the query-processing system, consistency ... Most problems find a simple and efficient solution if and only if the database has an acyclic scheme.

Keywords

  • Relational Database
  • Category Attribute
  • Database Scheme
  • Universal Schema
  • Categorical Database

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-17187-8_44
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-47346-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.H. Andersen, Multidimensional contingency tables, Scand. J. Stat. 1 (1974) 115–127

    Google Scholar 

  2. C. Beeri, R. Fagin, D. Maier and M. Yannakakis, On the desirability of acyclic database schemes, J. ACM 30 (1983) 479–513

    Google Scholar 

  3. C. Berge, Graphs and hypergraphs. NORTH HOLLAND, 1973.

    Google Scholar 

  4. Y. Bishop et al., Discrete multivariate analysis: theory and practice. MIT PRESS, 1978.

    Google Scholar 

  5. J.N. Darroch, Interaction models, Encyclopedia of statistical sciences, 4 (1983) 182–187

    Google Scholar 

  6. J.N. Darroch et al., Markov fields and log-linear interaction models for contingency tables, The Ann. of Statist. 8:3 (1980) 522–539

    Google Scholar 

  7. L.A. Goodman, The multivariate analysis of qualitative data: interactions among multiple classifications, J. Amer.Stat. Assoc. 65 (1070) 226–256

    Google Scholar 

  8. L.A. Goodman, Partitioning of chi-square, analysis of marginal contingency tables and estimation of extected frequencies in multidimensional contingency tables, J. Amer. Statist. Assoc. 66 (1971) 339–344

    Google Scholar 

  9. S.J. Haberman, The general log-linear model. Ph. D. thesis. Dept. Statist. Univ. Chicago.

    Google Scholar 

  10. S.J. Haberman, The analysis of frequency data. Un.Chicago PRESS, 1974

    Google Scholar 

  11. F.M. Malvestuto, Statistical treatment of the information content of a database, Inf. Systems 11:3 (1986)

    Google Scholar 

  12. F.M. Malvestuto, Decomposing complex contingency tables to reduce storage requirements, Proc. Conf. on "Computational Statistics" (1986)

    Google Scholar 

  13. F.M. Malvestuto, La Ricerca Operativa nella progettazione delle vasi di dati statistici, Atti delle Giornate AIRO su "Informatica e Rlcerca Operativa" (1986)

    Google Scholar 

  14. T.H. Merret et al., Distribution model of relations, Proc. 5 th Conf. on Very Large Data Bases, Rio de Janeiro.

    Google Scholar 

  15. J.E. Shore et al., Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy, IEEE Trans. Inf. Theory 26 (1980) 26–37

    Google Scholar 

  16. A. Shoshani et al., Statistical and scientific database issues, IEEE Trans. Soft. Eng. 11 (1985) 1040–1047

    Google Scholar 

  17. R.E. Tarjan et al., Simple linear-time algorithm to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput. 13:3 (1984)

    Google Scholar 

  18. M. Vlach, Conditions for the existence of solutions of the three-dimensional planar transportation problem, Discr. Appl. Math. 13 (1986) 61–78

    Google Scholar 

  19. S. Watanabe, A unified view of clustering algorithms, IFIP Congress on "Foundations of information processing", 1971

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Malvestuto, F.M. (1986). Modelling large bases of categorical data with acyclic schemes. In: Ausiello, G., Atzeni, P. (eds) ICDT '86. ICDT 1986. Lecture Notes in Computer Science, vol 243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-17187-8_44

Download citation

  • DOI: https://doi.org/10.1007/3-540-17187-8_44

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17187-4

  • Online ISBN: 978-3-540-47346-6

  • eBook Packages: Springer Book Archive