Cartesian closed categories and typed λ-calculi

  • J. Lambek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 242)


Deductive System Congruence Relation Polynomial Expression Internal Power Deduction Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B1981]
    A. Burroni, Algèbres graphiques, 3ième colloque sur les catégories, Cahiers de topologie et géométrie différentielle 23 (1981), 249–265.Google Scholar
  2. [C1983]
    P.-L. Curien, Combinateurs catégoriques, algorithmes séquentiels et programmation applicative, Thèse de doctorat d'état, Université Paris VII.Google Scholar
  3. [EK1966]
    S. Eilenberg and G.M. Kelly, Closed categories, in: Eilenberg, Harrison, MacLane, Röhrl (editors) Proceedings of the conference on categorical algebra, La Jolla 1965 (Springer-Verlag, New York, 1966), 421–562.Google Scholar
  4. [GO1958]
    K. Gödel, Über eine bisher noch nicht benutzte Erweiterung des finiten Standpunktes, Dialectica 12 (1958), 280–287.Google Scholar
  5. [GO1957]
    R.L. Goodstein, Recursive number theory (North-Holland Publ. Co., Amsterdam 1957).Google Scholar
  6. [L1974]
    J. Lambek, Functional completeness of cartesian categories, Ann. Math. Logic 6 (1974), 259–292.Google Scholar
  7. [L1980]
    J. Lambek, From λ-calculus to cartesian closed categories; in J.P. Seldin and J.R. Hindley, To H.B. Curry, Essays in combinatory logic, lambda calculus and formalism (Academic Press, London 1980), 375–402.Google Scholar
  8. [LS1984]
    J. Lambek and P.J. Scott, Aspects of higher order categorical logic, Contemporary mathematics 30 (1984), 145–174.Google Scholar
  9. [LS1985]
    J. Lambek and P.J. Scott, Introduction to higher order categorical logic (Cambridge University Press, 1985).Google Scholar
  10. [S1967]
    L.E. Sanchis, Functionals defined by recursion, Notre Dame Journal of Formal Logic 8 (1967) 161–174.Google Scholar
  11. [T1982]
    M.-F. Thibault, Prerecursive categories, J. Pure and Applied Algebra 24 (1982) 79–93.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • J. Lambek
    • 1
  1. 1.McGill UniversityCanada

Personalised recommendations