Combinators and lambda-calculus, a short outline

  • J. Roger Hindley
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 242)


This article introduces the basic ideas of combinatory logic and lambda-calculus, to serve as background for the other papers in this volume. Typed and untyped systems are covered.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BARENDREGT, H. P. [1984] The Lambda Calculus, its Syntax and Semantics, 2 ed., North-Holland Co., Amsterdam.Google Scholar
  2. CHURCH, A. [1941] The Calculi of Lambda Conversion, Princeton Univ. Press; reprinted 1963 by University Microfilms Inc., Ann Arbor, Michigan, U.S.A.Google Scholar
  3. CURRY, H. B. [1969] Modified basic functionality in combinatory logic, Dialectica 23, 83–92.Google Scholar
  4. — & FEYS, R. [1958] Combinatory Logic, Vol. I, North-Holland Co., Amsterdam.Google Scholar
  5. — & HINDLEY, J. R., SELDIN, J. P. [1972] Combinatory Logic, Vol. II, North-Holland Co., Amsterdam.Google Scholar
  6. HINDLEY, J. R. [1969] The principal type-scheme of an object in combinatory logic, Trans. American Math. Soc. 146, 29–60.Google Scholar
  7. — & SELDIN, J. P. [1985] Introduction to Combinators and λ-Calculus, Cambridge Univ. Press, England, 1985 or 86.Google Scholar
  8. PRAWITZ, D. [1965] Natural Deduction, Almgvist and Wiksell, Uppsala, Sweden.Google Scholar
  9. SCHONFINKEL, M. [1924] Uber die Bausteine der Mathematischen Logik, Math. Annalen 92, 305–16. (English Trans. in From Frege to Godel, ed. J. van Heijenoort, Harvard Univ. Press, 1967, pp. 355–66.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • J. Roger Hindley
    • 1
  1. 1.Mathematics DepartmentUniversity CollegeSwanseaU. K.

Personalised recommendations