Sur l'analogie entre les propositions et les types

  • Thierry Coquand
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 242)


Combinatory Logic Lambda Calculus Nous Allons Cartesian Closed Category Cette Notion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P.B. Andrews. “Resolution in Type Theory.” Journal of Symbolic Logic 36,3 (1971), 414–432.Google Scholar
  2. [2]
    R. Backhouse. “Algorithm development in Martin-Löf's type theory.” University of Essex (July 1984).Google Scholar
  3. [3]
    H. Barendregt “The lambda-Calculus: Its Syntax and Semantics.” North-Holland (1980).Google Scholar
  4. [4]
    E. Bishop. “Foundations of Constructive Analysis”. McGraw-Hill, New-York (1967).Google Scholar
  5. [5]
    N.G. de Bruijn “Lambda-Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation, with Application to the Church-Rosser Theorem.” Indag. Math. 34,5 (1972), 381–392.Google Scholar
  6. [6]
    N.G. de Brujin “A survey of the project Automath.” in Curry Volume, Acc. Press (1980)Google Scholar
  7. [7]
    A. Church “A formulation of the simple theory of types” Journal of Symbolic Logic (1940), 56–68Google Scholar
  8. [8]
    R.L. Constable, J.L. Bates. “The Nearly Ultimate Pearl.” Dept. of Computer Science, Cornell University. (Dec. 1983).Google Scholar
  9. [9]
    Th. Coquand “Une Theorie des Constructions” Thèse de 3eme cycle, Paris VII (1985)Google Scholar
  10. [10]
    Th. Coquand “An analysis of Girard's Paradox” Submited to the Symposium on Logic and Computer Science, 86Google Scholar
  11. [11]
    Th. Coquand, G. Huet “Constructions: A Higher Order Proof System for Mechanizing Mathematics.” EUROCAL85, Linz, Springer-Verlag LNCS 203 (1985).Google Scholar
  12. [12]
    Th. Coquand, G. Huet “Concepts Mathématiques et Informatiques formalisés dans le Calcul des Constructions” Papier presente au Colloque de Logique d'Orsay (1985)Google Scholar
  13. [13]
    H. B. Curry, R. Feys. “Combinatory Logic Vol. I.” North-Holland, Amsterdam (1958).Google Scholar
  14. [14]
    L. Damas, R. Milner. “Principal type-schemas for functional programs.” Edinburgh University (1982).Google Scholar
  15. [15]
    J.Y. Girard “Interprétation fonctionnelle et élimination des coupures de l'arithmetique d'ordre supérieur” These d'Etat, Paris VII (1972)Google Scholar
  16. [16]
    S. Fortune, D. Leivant, M. O'Donnell. “The Expressiveness of Simple and Second-Order Type Structures.” Journal of the Assoc. for Comp. Mach., 30,1, (Jan. 1983) 151–185.Google Scholar
  17. [17]
    Ch. Goad “Computational uses of the manipulation of formal proofs” Ph. D., Stanford University (1980)Google Scholar
  18. [18]
    R. Harrop “Concerning formulas of the type AAB, A ⇒ ∃x.B(x) in intuitionnistic formal systems” Journal of Symbolic Logic, vol. 25 (1960), 27–32Google Scholar
  19. [19]
    W. A. Howard. “The formulæ-as-types notion of construction.” Unpublished manuscript (1969). Reprinted in to H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, Eds J. P. Seldin and J. R. Hindley, Academic Press (1980).Google Scholar
  20. [20]
    S.C. Kleene. “Introduction to Meta-mathematics.” North Holland (1952).Google Scholar
  21. [21]
    S.C. Kleene “Realizability: a retrospective survey” L.N. 337, Cambridge Summer School in Mathematical Logic (1971)Google Scholar
  22. [22]
    G. Kreisel. “On the interpretation of nonfinitist proofs, Part I, II.” JSL 16 (1952, 1953).Google Scholar
  23. [23]
    J. Lambek. “From Lambda-calculus to Cartesian Closed Categories.” in To H. B. Curry: Essays on Combinatory Logic, Lambda-calculus and Formalism, Eds. J. P. Seldin and J. R. Hindley, Academic Press (1980).Google Scholar
  24. [24]
    P. Martin-Löf “intuitionistic Type Theory” Bibliopolis, (1980)Google Scholar
  25. [25]
    A.R. Meyer and J.C. Mitchell “Second-order Logical Relations” extended abstract (1985)Google Scholar
  26. [26]
    R. Milner “A theory of type polymorphism in programming” JCSS 17(3), 348–375 (1978)Google Scholar
  27. [27]
    G.C. Mints “E-Theorems” J. Soviet Math. 8, 323–329 (1978)Google Scholar
  28. [28]
    J.C. Mitchell “Lambda Calculus Models of Typed Programming langages” Ph. D. thesis, M.I.T. (1984)Google Scholar
  29. [29]
    C. Mohring. “Exemples de Développement de Programmes dans la Théorie des Constructions.” Rapport de DEA, Université d'Orsay (Sept 85).Google Scholar
  30. [30]
    J.C. Reynolds “Polymorphism is not Set-Theoretic” Lecture Notes in Computer Science 173, Springer-Verlag, 1984Google Scholar
  31. [31]
    B. Russel and A.N. Whitehead “Principia Mathematica” Volume 1,2,3 Cambridge University Press (1912)Google Scholar
  32. [32]
    J.R. Shoenfield “Mathematical Logic” Addison-Wesley (1967)Google Scholar
  33. [33]
    W. Tait. “Intensional interpretations of functionals of finite type I.” J. of Symbolic Logic 32 (1967) 198–212.Google Scholar
  34. [34]
    G. Werner “Méthodes et Problèmes de la synthèse de programmes dans un univers typé” Université de Lille I (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Thierry Coquand
    • 1
  1. 1.CMU and INRIAFrance

Personalised recommendations