Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. D.Coppersmith and S.Winograd (1982), On the asymptotic complexity of matrix multiplication, SIAM J. Computing, 472–492.Google Scholar
  2. L. Csanky (1976), Fast parallel matrix inversion algorithms, SIAM J. Computing 5, 618–623.Google Scholar
  3. J. Edmonds (1967), Systems of distinct representatives and linear algebra, J. Res. Nat. Bur. Standards Sect. B 71B, 241–247.Google Scholar
  4. S.Even (1979), Graph algorithms, Computer Science Press.Google Scholar
  5. G. Frobenius (1917), Über zerlegbare Determinanten, Sitzungsber. Königl. Preuss. Akad. Wiss. XVIII, 274–277.Google Scholar
  6. Z. Galil (1980), Finding the vertex connectivity of graphs, SIAM J. Computing, 9, 197–199.Google Scholar
  7. M. Grötschel, L. Lovasz and A. Schrijver (1981), The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1, 169–197.Google Scholar
  8. M. Grötschel, L. Lovasz and A. Schrijver (1984), Polynomial algorithms for perfect graphs, Annals of Discrete Math. 21, 325–256.Google Scholar
  9. A.W. Ingleton and M.J. Piff (1973), Gammoids and transversal matroids, J. Comb. Theory B15, 51–68.Google Scholar
  10. R.M. Karp, E. Upfal and A. Wigderson (1986), Constructing a perfect matching is in random NC, Combinatorica 6, 35–48.Google Scholar
  11. P.W. Kasteleyn (1961), The statistics of dimers on a lattice. I. The number of dimer arrangements on a quadratic lattice, Physica 27, 1209–1225.Google Scholar
  12. N.Linial, L.Lovasz and A.Wigderson (1986a), A physical interpretation of graph connectivity, Proc. 27th Annual Symp. on Found. of Computer Science, IEEE Computer Soc.Google Scholar
  13. N.Linial, L.Lovasz and A.Wigderson (1986b), Rubber bands, convex embeddings, and graph connectivity, Combinatorica (submitted).Google Scholar
  14. L. Lova'sz (1979a), On determinants, matchings, and random algorithms, in: Fundamentals of Computation Theory, FTC' 79 (ed. L. Budach), Akademie-Verlag, Berlin; 565–574.Google Scholar
  15. L. Lovasz (1979b), On the Shannon capacity of a graph, IEEE Trans. Inform. Theory 25, 1–7.Google Scholar
  16. L. Lovasz and M.D. Plummer (1986), Matching Theory, Akadėmiai Kiado, Budapest-North-Holland, Amsterdam.Google Scholar
  17. L.Lovasz, M.Saks and A.Schrijver, Connectivity and orthonormal representations of graphs (to be published)Google Scholar
  18. K.Mulmuley, U.Vazirani and V.Vazirani (1986), Matching is as easy as matric inversion, Combinatorica (to appear)Google Scholar
  19. H. Perfect (1966), Symmetrized form of P.Hall's theorem on distinct representatives, Quart. J. Math. Oxford 17, 303–306.Google Scholar
  20. J.T. Schwartz (1980), Fast probabilistic algorithms for verification of polynomial identities, J. ACM 27, 701–717.Google Scholar
  21. W.T. Tutte (1947), The factorization of linear graphs, J. London. Math. Soc. 22, 107–111.Google Scholar
  22. W.T. Tutte (1963), How to draw a graph, Proc. London Math. Soc. 13, 743–768.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Laszlo Lovasz
    • 1
  1. 1.Department of Computer ScienceEötvös Lorand UniversityBudapestHungary

Personalised recommendations