Advertisement

Irreducible polynomials over finite fields

  • Joachim von zur Gathen
Session 4 Theory
Part of the Lecture Notes in Computer Science book series (LNCS, volume 241)

Abstract

Several methods of computing irreducible polynomials over finite fields are presented. If preprocessing, depending only on p , is allowed for free, then an irreducible polynomial of degree at least n over Zp can be computed deterministically with O(n logp), i.e. O(output size), bit operations. The estimates for the preprocessing time depend on unproven conjectures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Adleman and H.W. Lenstra, Finding irreducible polynomials over finite fields. Proc. 18th Ann. ACM Symp. Theory of Computing, Berkeley CA, 1986, 350–355.Google Scholar
  2. E.R. Berlekamp, Factoring polynomials over finite fields. Bell System Tech. J. 46 (1967), 1853–1859.Google Scholar
  3. E.R. Berlekamp, Factoring polynomials over large finite fields. Math. Comp. 24 (1970), 713–735.Google Scholar
  4. S.I. Borevich and I.R. Shafarevich, Zahlentheorie. Birkhäuser Verlag, Basel, 1966.Google Scholar
  5. J. Calmet and R. Loos, An improvement of Rabin's probabilistic algorithm for generating irreducible polynomials over GF(p). Interner Berich Nr. 3/80, Universität Karlsruhe, 1980.Google Scholar
  6. P. Camion, A deterministic algorithm for factorizing polynomials of F q[x]. Ann. Discr. Math. 17 (1983), 149–157.Google Scholar
  7. D.G. Cantor and H. Zassenhaus, On algorithms for factoring polynomials over finite fields. Math. Comp. 36 (1981), 587–592.Google Scholar
  8. A.L. Chistov and D.Yu. Grigoryev, Polynomial-time factoring of the multivariable polynomials over a global field. LOMI preprint E-5-82, Leningrad, 1982.Google Scholar
  9. W. Eberly, Very fast parallel matrix and polynomial arithmetic. Proc. 25th Ann. IEEE Symp. Foundations of Computer Science, Singer Island FL, 1984, 21–30.Google Scholar
  10. J. von zur Gathen, Parallel algorithms for algebraic problems. SIAM J. Comput. 13 (1984), 802–824.Google Scholar
  11. J. von zur Gathen, Irreducibility of multivariate polynomials. J. Computer System Sciences 31 (1985), 225–264.Google Scholar
  12. J. von zur Gathen, Factoring polynomials and primitive elements for special primes. To appear in Theor. Computer Science, 1986.Google Scholar
  13. J. von zur Gathen and E. Kaltofen [1985a], Factorization of multivariate polynomials over finite fields. Math. Comp. 45 (1985), 251–261.Google Scholar
  14. J. von zur Gathen and E. Kaltofen [1985b], Factoring sparse multivariate polynomials. J. Computer System Sciences 31 (1985), 265–287.Google Scholar
  15. H. Hasse, Number Theory. Grundlehren der math. Wiss., vol. 229, Springer Verlag, 1980.Google Scholar
  16. C. Hooley, On Artin's conjecture. J. reine ang. Math. 225 (1967), 209–220.Google Scholar
  17. M.A. Huang, Riemann Hypothesis and finding roots over finite fields. Proc. 17th Ann. ACM Symp. Theory of Computing, Providence RI, 1985, 121–130.Google Scholar
  18. E. Kaltofen, Uniform closure properties of p-computable functions. Proc. 18th Ann. ACM Symp. Theory of Computing, Berkeley CA, 1986, 330–337.Google Scholar
  19. D.E. Knuth, The Art of Computer Programming, vol.2, 2nd Ed. Addison-Wesley, Reading MA, 1981.Google Scholar
  20. A.K. Lenstra, Factoring multivariate polynomials over finite fields. J. Comput. System Sci. 30 (1985), 235–248.Google Scholar
  21. R. Lidl and H. Niederreiter, Finite fields. Encyclopedia of Mathematics and its applications, Vol. 20, Addison-Wesley, Reading MA, 1983.Google Scholar
  22. J.H. van Lint, Introduction to coding theory. Graduate texts in Mathematics 86, Springer Verlag, New York, 1971.Google Scholar
  23. L. Murata, An average type result on the number of primes satisfying generalized Wieferich condition. Proc. Japan Acad. 57 (1981), 430–432.Google Scholar
  24. M.O. Rabin, Probabilistic algorithms in finite fields. SIAM J. Comp. 9 (1980), 273–280.Google Scholar
  25. R.J. Schoof, Elliptic curves over finite fields and the computation of square roots mod p. Math. Comp. 44 (1985), 483–494.Google Scholar
  26. V. Strassen, The asymptotic spectrum of tensors and the exponent of matrix multiplication. Proc. 27th Ann. IEEE Symp. Foundations of Computer Science, Toronto, Canada, 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Joachim von zur Gathen
    • 1
  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada

Personalised recommendations