Advertisement

Integrability, chaos and nonlinear superposition formulas for differential matrix Riccati equations

  • M. A. del Olmo
  • M. Rodríguez
  • P. Winternitz
V. Other Topics
Part of the Lecture Notes in Physics book series (LNP, volume 263)

Abstract

We point out that nonlinear superposition principles can be used to identify integrable systems of nonlinear ordinary differential equations among families of nonintegrable ones. A superposition formula is then obtained for a class of integrable equations, namely the matrix Riccati equations.

Keywords

Riccati Equation Nonlinear Ordinary Differential Equation Maximal Parabolic Subgroup Matrix Riccati Equation Superposition Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963).Google Scholar
  2. 2.
    C. Sparrow, The Lorenz Equations. Bifurcations. Chaos and Strange Attractors, Springer, New York, 1982.Google Scholar
  3. 3.
    H. Hénon and C. Heiles, Astron. J. 69, 73 (1964).Google Scholar
  4. 4.
    A. Ramani, B. Dorizzi, B. Grammaticos, J. Math. Phys. 24, 2282 (1983).Google Scholar
  5. 5.
    T.C. Bountis, V. Papageorgiou and P. Winternitz, J. Math. Phys. 27, xxx (1986).Google Scholar
  6. 6.
    R.L. Anderson, Lett. Math. Phys. 4, 1 (1980).Google Scholar
  7. 7.
    R.L. Anderson, J. Harnad and P. Winternitz, Physica D4, 164 (1982).Google Scholar
  8. 8.
    J. Harnad, P. Winternitz and R.L. Anderson, J. Math. Phys. 24, 1062 (1983).Google Scholar
  9. 9.
    S. Shnider and P. Winternitz, Lett. Math. Phys. 6, 69 (1984); J. Math. Phys. 25, 3155 (1984).Google Scholar
  10. 10.
    M.A. del Olmo, M.A. Rodriguez and P. Winternitz, J. Math. Phys. 27, 14 (1986).Google Scholar
  11. 11.
    S. Lie and G. Scheffers, deVorlesungen Ober continuierlichen Gruppen mit geometrischen und anderen Anwendungen. Teubner. Leipzig. 1893 (Reprinted by Chelsea, New York, 1967).Google Scholar
  12. 12.
    M.A. del Olmo, M.A. Rodrǵuez, Preprint CRM-1309, Montrál, 1985.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • M. A. del Olmo
    • 1
  • M. Rodríguez
    • 1
  • P. Winternitz
    • 1
  1. 1.Centre de Recherches MathématiquesUniversité de MontréalMontréalCanada

Personalised recommendations