Advertisement

From localized to extended states in a time-dependent quantum model

  • Jorge V. José
III. Time Dependent Systems
Part of the Lecture Notes in Physics book series (LNP, volume 263)

Abstract

The problem of a particle inside a rigid box with one of the walls oscillating periodically in time is studied quantum mechanically. In the classical limit, this model was introduced by Fermi in the context of cosmic ray physics. The classical solutions can go from being quasiperiodic to chaotic, as a function of the amplitude of the wall oscillation. In the quantum case, we calculate the spectral properties of the corresponding evolution operator, i.e.: the quasi-energy eigenvalues and eigenvectors. The specific form of the wall oscillation, e.g. \(\ell (t) = \sqrt {1 + 2\delta \left| t \right|}\), with |t| ≤ 1/2, and ℓ(t + 1) = ℓ(t) , is essential to the solutions presented here. It is found that as ℏ increases with δfixed, the nearest neighbor separation between quasi-energy eigenvalues changes from showing no energy level repulsion to energy level repulsion. This transition, from Poisson-like statistics to Gaussian-Orthogonal-Ensemble-like statistics is tested by looking at the distribution of quasi-energy level nearest neighboor separations and the Δ3(L) statistics. These results are also correlated to a transition between localized to extended states in energy space. The possible relevance of the results presented here to experiments in quasi-one-dimensional atoms is also discussed.

Keywords

Extended State Dimensional Hilbert Space Weak Coupling Regime Infinite Dimensional Hilbert Space Wall Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See for example, M.V.Berry, Chaotic behavior in deterministic systems. Les Houches summer school XXXVI, Ed. R. Helleman and G. Joos. (North Holland 1981). G. Zaslasvskii Phys. Rep.80, 157.(1981)Google Scholar
  2. 2.
    M.V.Berry and M.Tabor Proc.Roy.Soc.London,Ser A356, C375 (1977); S.W.McDonald and A.N.Kaufman Phys.Rev.Lett. 42,1189 (1979);G.Casati et.al. Nuovo Cimiento Lett. 28,279 (1980); M.V.Berry Ann.Phys.(NY)131, 163 (1981). 3. O.Bohigas, M.J. Giannoni, and C. Schmit Phys.Rev.Lett. 52, 1.(1984); T.H. Seligman, J.J. Versbaarschot, and M.R. Zirnbauer ibid. 53 215.(1984); E.Heller,H. Koppel and L.S. Cerderbaum ibid. 52 1665.(1984); T.H.Seligman and J.J.Versbaarshot Phys.Lett. A108 183. (1985) and J.Phys. A18 2751. (1985).Google Scholar
  3. 4.
    See the recent updated review by T.A. Brody et.al. Rev.Mod.Phys. 53,385. (1981)Google Scholar
  4. 5.
    R.V.Jensen Phys. Rev.Lett. 49 1365 (1982) and Phys.Rev. A30 386(1984).Google Scholar
  5. 6.
    E.Bayfield and P.M Koch Phys.Rev.Lett. 33,258 (1974). P.M.Koch and D.R.Mariani ibid. 46, 1275 (1981); K.A.H. van Leeuwen et.al. ibid 55, 2231 (1985), and references therein. J.Bayfield, “Fundamental Aspects of Quantum Theory”, (Notes in Physics, Springer Verlag, 1986). J.E.Bayfield and L.A.Pinnaduwage, Phys. Rev Lett. 54 313 (1985). J.N. Bardsley at.al. ibid. 56, 1007 (1986)Google Scholar
  6. 7.
    G.Casati,B.V.Chirikov,F.M.Izrailev, and J.Ford in, Stochastic behavior in classical and quantum Hamiltonian Systems, ed G.Casati and J.Ford (Lecture Notes in physics Vol 93, 334: (1979). Springer, NY).Google Scholar
  7. 6.
    F.M.Izrailev and D.L.Shepelyanski, Dokl.Akad.Nauk SSSR 249,1103 (1979). [ Sov.Phys.Dokl. 24, 996 (1979)]; T.A. Hogg and B.A.Huberman Phys.Rev.Lett. 48,711 (1982); Phys.Rev. A28, 22.(1983); S.J.Chang and K.J.Shi Phys.Rev.Lett 55,(1985).Google Scholar
  8. 8.
    M.Feingold,S.Fishman, D.R.Grempel and R.E.Prange hys.Rev. B31, 6852 (1985)Google Scholar
  9. 9.
    S.Fishman, D.R.Grempel and R.E.Prange Phys.Rev.Lett. 49, 509 (1982). D.R.Grempel and R.E.Prange and S.Fishman Phys. Rev. A 29, 1639 (1984)Google Scholar
  10. 10.
    A.Molcanov Comm.Math.Phys. 78, 429 (1981)Google Scholar
  11. 11.
    F.M.Izrailev Pys. Rev. Lett. 56, 541 (1986)Google Scholar
  12. 12.
    J.V. José and R.Cordery ibid. 56, 290 (1986)Google Scholar
  13. 13.
    J.V. José, ( to be publhised )Google Scholar
  14. 14.
    G.M.Zaslavskii and B.Chirikov Dokl. Akad. Nauk. SSSR 159, 306 (1964); [ Sov.Phys.Doklady 9, 760 (1965)]; A.Brahic Astrophys. 12 98 (1971); M.A.Lieberman and A.J.Lichtenberg Phys.Rev. A5 1852 (1972). For an excelent review see “Regular and stochastic motion” by A.J. Lichtenberg and A.M. Lieberman, Publ. Springer-Verlag,(1983)Google Scholar
  15. 15.
    E.Fermi Phys. Rev. 75, 1169.(194Google Scholar
  16. 16.
    C. Roman and T. Seligman ( in this proceedings ).Google Scholar
  17. 17.
    M. Berry, has also reconized in the past that the type of functional forms given by Eq(6), do have the property of simplifying highly nonlinear problems ( private communication).Google Scholar
  18. 18.
    G.Casati, B.Chirikov and D.L. Shepelyanskii, Phys. Rev. Lett. 53, 2525 (1984)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Jorge V. José
    • 1
  1. 1.Department of PhysicsNortheastern UniversityBoston

Personalised recommendations