Fluctuation properties of regular and irregular spectra

  • V. B. Sheorey
II. Spectra and States
Part of the Lecture Notes in Physics book series (LNP, volume 263)


Chaotic Motion Classical Trajectory Random Matrix Theory Regular Sequence Symmetry Type 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berry M.V., 1985, Proc. Roy. Soc. A400, 229.Google Scholar
  2. Bohigas, O. and Giannoni, M.J., 1984, Chaotic Motion and Random Matrix Theories, in Mathematical and Computational Methods in Nuclear Physics (ed. J.S.Dehesa, J.M.G.Gomez and A.Polls), Lecture Notes in Physics, Vol. 209, 1 (New York: Springer-Varlag).Google Scholar
  3. Brody, T.A., Flores, J., French, J.B.,Mello, P.A., Pandey, A., and Wong, S.S.M., 1981, Rev. Mod. Phys. 53, 385.Google Scholar
  4. Jennings, B.K., Bhaduri, R.K. and Brack, M., 1975, Nucl. Phys. A 253, 29.Google Scholar
  5. Parikh, J.C., and Sheorey, V.B., 1985, Pramana, 24, 39.Google Scholar
  6. Percival, I.C., 1977, Adv. Chem. Phys., 36, 1.Google Scholar
  7. Pullen, R.A. and Edmonds, A.R., 1981, J. Phys. A, 14, L477.Google Scholar
  8. Seligman, T.H., Verbaarschot, J.J.M. and Zirnbauer, M.R., 1984, Phy. Rev. Lett., 53, 215.Google Scholar
  9. Zaslavsky, G.M., 1981, Phys. Rep. 80, 157.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • V. B. Sheorey
    • 1
  1. 1.Physical Research LaboratoryNavrangpura, Ah medabadIndia

Personalised recommendations