Advertisement

Riemann's Zeta function: A model for quantum chaos?

  • M. V. Berry
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 263)

Keywords

Chaotic System Zeta Function Closed Orbit Quantum Chaos Classical Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H.M.Edwards, Riemann's Zeta Function (Academic Press: New York and London) (1974)Google Scholar
  2. [2]
    C.E.Porter, Statistical theories of Spectra: Fluctuations (Academic Press: New York (1965)Google Scholar
  3. [3]
    F.J.Dyson, in ‘Symmetries in particle physics’ (eds: I.Bars, A.Chodos and C-H Tze; Plenum: New York and London) pp 279–281 (1984)Google Scholar
  4. [4]
    O.Bohigas and M.J.Giannoni, Chaotic motion and Random-matrix Theories in Mathematical and Computational Methods in Nuclear Physics eds.J.S.Dehesa, J.M.G.Gomez and A.Polls, Lecture Notes in Physics 209 (Springer-Verlag, N.Y.) pp. 1–99 (1984)Google Scholar
  5. [5]
    H.L.Montgomery, Proc.Symp.Pure Math. 24 181–193 (1973)Google Scholar
  6. [6]
    M.L.Mehta, Random Matrices and the Statistical Theory of Energy Levels (Academic Press: New York and London) (1967)Google Scholar
  7. [7]
    T.H.Seligman, and J.J.M.Verbaarschot, Phys.Lett. 108A 183–187 (1985)Google Scholar
  8. [8]
    M.V.Berry and M.Robnik, J.Phys.A. (1986) In pressGoogle Scholar
  9. [9]
    M.Robnik and M.V.Berry, J.Phys.A. (1986) In pressGoogle Scholar
  10. [10]
    M.V.Berry, Proc.Roy.Soc.Lond. A400 229–251 (1985)Google Scholar
  11. [11]
    M.V.Berry and M.Tabor, Proc.Roy.Soc.Lond. A356 375–394 (1977)Google Scholar
  12. [12]
    O. Bohigas, M.J.Giannoni and C.Schmit, Phys.Rev.Lett. 52 1–4 (1984)Google Scholar
  13. [13]
    M.V.Berry, Ann.Phys. (N.Y) 131 163–216 (1981)Google Scholar
  14. [14]
    Ouroboros: see Encyclopaedia Brittanica (15th ed.) vol. 9 p13 (1985)Google Scholar
  15. [15]
    M.C.Gutzwiller, J.Math.Phys. 12 343–358 (1971)Google Scholar
  16. [16]
    M.C.Gutzwiller, in ‘Path Integrals and their Applications in Quantum, Statistical and Solid-State Physics’ (Eds. G.J.Papadopoulos and J.T.Devreese Plenum, N.Y. 163–200 (1978)Google Scholar
  17. [17]
    M.C.Gutzwiller, in ‘Stochastic Behaviour in Classical and Quantum Hamiltonian Systems’ (eds. G.Casati and J.Ford) Lecture Notes in Physics 93 (Springer: Berlin) (1979)Google Scholar
  18. [18]
    R.Balian and C Bloch, Ann.Phys.(N.Y) 69 76–160 (1972)Google Scholar
  19. [19]
    M.V.Berry, Semiclassical Mechanics of Regular and Irregular Motion in Chaotic Behavior of Deterministic Systems (Les Houches Lectures XXXVI, eds.G.Iooss, R.H.G.Helleman and R.Stora (North-Holland: Amsterdam) pp171–271 (1983)Google Scholar
  20. [20]
    H.P.McKean, Comm.Pure App. Math. 25 225–246 (1972)Google Scholar
  21. [21]
    D.A.Hejhal, Duke Math.J. 43 441–482 (1976)Google Scholar
  22. [22]
    B.S.Pavlov and L.D.Faddeev, J.Soviet Math 3 522–548 (1975)Google Scholar
  23. [23]
    M.C.Gutzwiller, Physica 7D 341–355 (1983)Google Scholar
  24. [24]
    B.Simon, Ann.Phys. 146 209–220 (1983)Google Scholar
  25. [25]
    B.Simon, J. Funct. Anal. 53 84–98 (1983)Google Scholar
  26. [26]
    D.Ruelle, Inventiones Math 34 231–242 (1976)Google Scholar
  27. [27]
    D.Ruelle, Ergod. Th. and Dynam. Syst. 2 99–107 (1982)Google Scholar
  28. [28]
    W.Parry Israel J.Math. 45 41–52 (1983)Google Scholar
  29. [29]
    W.Parry Ergod Th. and Dynam. Syst. 4 117–134 (1984)Google Scholar
  30. [30]
    W.Parry and M.Pollicott, Annals of Math. 118 573–591 (1983)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • M. V. Berry
    • 1
  1. 1.H.H.Wills Physics LaboratoryBritolUK

Personalised recommendations