A categorical unification algorithm

  • D. E. Rydeheard
  • R. M. Burstall
Part II Research Contributions Section 4: Categorical Programming
Part of the Lecture Notes in Computer Science book series (LNCS, volume 240)


General Unifier Category Theory Unification Algorithm Exception Handling Decomposition Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burstall R.M. (1980) Electronic Category Theory. Proc. Ninth Annual Symposium on the Mathematical Foundations of Computer Science. Rydzyua, Poland.Google Scholar
  2. Burstall R.M. and Landin P.J. (1969) Programs and Their Proofs: An Algebraic Approach. Machine Intelligence 4. Edinburgh Univ. Press. pp 17–44.Google Scholar
  3. Burstall R.M. and Rydeheard D.E. (1986) Computational Category Theory. To appear.Google Scholar
  4. Colmerauer A. et al. (1973) Etude et realisation d'un système PROLOG. Convention de Research IRIA-Sesori No. 77030.Google Scholar
  5. Eriksson L.H. (1984) Syntheis of a Unification Algorithm in a Logic Programming Calculus. Journal of Logic Programming. Vol. 1. No. 1.Google Scholar
  6. Gordon M.J.C., Milner R. and Wadsworth C.P. (1979) Edinburgh LCF. Lecture Notes in Comp. Sci. Springer-Verlag.Google Scholar
  7. Hewitt C. (1972) Description and Theoretical Analysis (Using Schemata) of PLANNER: A Language for Proving Theorems and Manipulating Models in a Robot. Ph.D. Dept. Maths. M.I.T. Cambridge. Mass.Google Scholar
  8. Huet G. (1976) Résolution d'équations dans les languages d'ordre 1,2,...,ω. Thèse d'etat, Specialité Maths. University of Paris VII.Google Scholar
  9. Huet G. (1980) Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems. J.A.C.M. 27.4 pp 797–821.Google Scholar
  10. Huet G. and Oppen D.C. (1980) Equations and Rewrite Rules: A Survey. S.R.I. Research Report, S.R.I. International, Menlo park, Calif.Google Scholar
  11. Kleisli H. (1965) Every Standard Construction is Induced by a Pair of Adjoint Functors. Proc. Am. Maths. Soc. 16. pp. 544–546.Google Scholar
  12. Levi G. and Sirovich F. (1975) Proving Program Properties, Symbolic Evaluation and Logical Procedural Semantics. In L.N.C.S. 32. Math. Foundations of Computer Science. Springer-Verlag.Google Scholar
  13. Mac Lane S. (1971) Categories for the Working Mathematician. Springer-Verlag, New York.Google Scholar
  14. MacQueen D. (1984) Modules for Standard ML. Proc. A.C.M. Conf. on LISP and Functional Prog. Languages.Google Scholar
  15. Manna Z. and Waldinger R. (1980) Deductive Synthesis of The Unification Algorithm. S.R.I. Research Report.Google Scholar
  16. Martelli A. and Montanari U. (1982) An Efficient Unification Algorithm. A.C.M. Trans. on Prog. Languages and Systems. Vol. 4. No. 2.Google Scholar
  17. Milner R. (1978) A theory of type polymorphism in programming. J. Comp. Sys. Sci. 17, 3. pp. 348–375.Google Scholar
  18. Milner R. (1984) A Proposal for Standard ML. Proc. A.C.M. Symp. on LISP and Functional Programming.Google Scholar
  19. Paterson M.S. and Wegman M.N. (1978) Linear Unification. J. Comp. Sys. Sci. 16, 2, pp. 158–167.Google Scholar
  20. Paulson L.C. Verifying the Unification algorithm in LCF. Science of Comp. Programming 5.Google Scholar
  21. Robinson J.A. (1965) A machine-oriented logic based on the resolution principle. J.A.C.M. 12,1. pp. 23–41.Google Scholar
  22. Robinson J.A. and Wos L.T. (1969) Paramodulation and Theorem Proving in First-Order Theories with Equality. Machine Intell. 4. American Elsevier. pp. 135–150.Google Scholar
  23. Siekman J.H. (1984) Universal Unification. In the 7th Internal. Conf. on Automated Deduction. L.N.C.S. 170.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • D. E. Rydeheard
  • R. M. Burstall

There are no affiliations available

Personalised recommendations