Galois connections and computer science applications

  • A. Melton
  • D. A. Schmidt
  • G. E. Strecker
Part II Research Contributions Section 1: Semantics
Part of the Lecture Notes in Computer Science book series (LNCS, volume 240)


We have presented an existence theorem and some important properties of Galois connections. We have also shown how data structures problems can be simplified and better understood when Galois insertions are used. In particular, the proof of correctness of an implementation follows simply from the construction of a Galois insertion. We plan further applications of Galois connections theory to computing-related problems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. 1.
    Birkhoff, G. Lattice Theory, 3rd ed. AMS Colloquium Publication, Rhode Island, 1967.Google Scholar
  2. 2.
    Blyth, T.S., and Janowitz, M.F. Residuation Theory. Pergamon Press, Oxford, 1972.Google Scholar
  3. 3.
    Gierz, G., et. al. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, 1980.Google Scholar
  4. 4.
    Herrlich, H. and Husek, M. Galois connections, Proc. Math. Foundations of Prog. Semantics, Manhattan, KS, April, 1985, Springer-Verlag Lecture Notes in Computer Science, to appear.Google Scholar
  5. 5.
    Huet, G., and Oppen, D. Equations and rewrite rules: A survey. In R. Book (ed.), Formal Language Theory, Perspectives and Open Problems. Academic Press, New York, 1980, pp. 349–405.Google Scholar
  6. 6.
    McCarthy, J. Towards a mathematical science of computation, Proc. IFIP Congress 1963, pp. 21–28, North-Holland, Amsterdam, 1963.Google Scholar
  7. 7.
    Ore, O. Galois connexions, Trans. Amer. Math. Soc. 55 (1944) 493–513.Google Scholar
  8. 8.
    Pickert, G. Bemerkungen uber Galois-Verbingungen, Archiv. Math. 3 (1952) 285–289.Google Scholar
  9. 9.
    Schmidt, D. Denotational Semantics, Allyn and Bacon, Inc., Boston, 1986.Google Scholar
  10. 10.
    Schmidt, J. Beitrage fur Filtertheorie, II. Math. Nachr. 10(1953) 197–232.Google Scholar
  11. 11.
    Scott, D. Continuous Lattices, Springer-Verlag Lecture Notes in Math. 274 (1972), pp. 97–136.Google Scholar
  12. 12.
    Smyth, M. B. and Plotkin, G. D. The category-theoretic solution of recursive domain equations, SIAM Journal of Computing 11(1982) 761–783.Google Scholar
  13. 13.
    Wegner, P. Programming language semantics. In Formal Semantics of Programming Languages, R. Rustin, ed., Prentice-Hall, Englewood Cliffs, N.J., 1972, pp. 149–248.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • A. Melton
    • 1
  • D. A. Schmidt
    • 1
  • G. E. Strecker
    • 2
  1. 1.Computer Science DepartmentKansas State UniversityManhattanU.S.A.
  2. 2.Mathematics DepartmentKansas State UniversityManhattanU.S.A.

Personalised recommendations