Advertisement

Finite approximation of spaces

Extended abstract
  • M. B. Smyth
Part II Research Contributions Section 1: Semantics
Part of the Lecture Notes in Computer Science book series (LNCS, volume 240)

Keywords

Inverse Limit Heyting Algebra Prime Filter Frame Homomorphism Finite Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Arbib,M., and Manes,E., The greatest fixpoint approach to data types, Proc. 3rd Workshop on Categorical and Algebraic Methods in Computer Science, Dortmund (1980)Google Scholar
  2. [2]
    Avizienis, A., Signed-digit representations for fast parallel arithmetic, IRE Trans. EC 10 (1961) 389–400Google Scholar
  3. [3]
    Bourbaki,N., Elements of Mathematics: General Topology Part I, Hermann/Addison-Wesley (1966)Google Scholar
  4. [4]
    Brouwer, L., Collected Works Vol. 1, ed. A. Heyting, North-Holland Amsterdam (1975)Google Scholar
  5. [5]
    Fourman,M., and Grayson,R., Formal Spaces, L.E.J. Brouwer Centenary Symposium, North Holland (1982) 107–122.Google Scholar
  6. [6]
    Gierz,G., et al., A Compendium of Continuous Lattices, Springer (1980)Google Scholar
  7. [7]
    Gunter, C., Profinite solutions for recursive domain equations (Thesis), T.R. CMU-CS-85-107, Carnegie-Mellon University, Pittsburgh (1985)Google Scholar
  8. [8]
    Johnstone,P., Stone Spaces, Cambridge University Press (1982)Google Scholar
  9. [9]
    Johnstone,P., The point of pointless topology, Bull.Am.Math.Soc. (1983)Google Scholar
  10. [10]
    Martin-Lof, P., Notes on Constructive Mathematics, Almqvist & Wicksell, Stockholm (1970)Google Scholar
  11. [11]
    Parikh, R., The problem of vague predicates, in: Cohen, R.S., & Wartovsky (eds.), Language, Logic and Method, Reidel, (1983) 241–261Google Scholar
  12. [12]
    Plotkin, G., A powerdomain construction, SIAM J. Comput. 5 (1976) 452–487Google Scholar
  13. [13]
    Plotkin,G., Lecture notes on domain theory, EdinburghGoogle Scholar
  14. [14]
    Reynolds, J., On the relation between direct and continuation semantics, ICALP '74, Springer LNCS 14 (1974) 141–156Google Scholar
  15. [15]
    Scott, D., The lattice of flow diagrams, Lecture Notes in Math. 188 (ed. E. Engeler), Springer (1971) 311–366Google Scholar
  16. [16]
    Scott,D., Outline of a mathematical theory of computation, Proc. 4th Ann. Princeton Conf. on Inf. Sci. and Systems, (1970) 65–106Google Scholar
  17. [17]
    Scott, D., Domains for denotational semantics, ICALP '82, Springer LNCS 140 (1982) 577–613Google Scholar
  18. [18]
    Smyth, M., Effectively given domains, Theor.Comp.Sci. 5 (1977) 257–274Google Scholar
  19. [19]
    The largest cartesian closed category of domains, Theor.Comp. Sci. 27 (1983) 109–119Google Scholar
  20. [20]
    Smyth, M., Predicate transformers and power domains, ICALP '83, Springer LN 154 (1983) 662–675Google Scholar
  21. [21]
    Smyth, M., and Plotkin, G., The category-theoretic solution of recursive domain equations, SIAM J. Comput. 11 (1982) 761–783Google Scholar
  22. [22]
    Wiedmer,E., Exaktes Rechnen mit reellen Zahlen... (Thesis) ETH Zurich (1977); also Theor.Comp.Sci. (1979)Google Scholar
  23. [23]
    Winskel,G., and Larsen,K., Using information systems to solve recursive domain equations effectively, Semantics of Data Types, ed. G.Kahn et al., Springer LN 173 (1984) 109–129.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • M. B. Smyth
    • 1
  1. 1.Department of ComputingImperial CollegeLondon

Personalised recommendations