Weakest preconditions: Categorical insights

  • Ernest G. Manes
Part II Research Contributions Section 1: Semantics
Part of the Lecture Notes in Computer Science book series (LNCS, volume 240)


Inverse Semigroup Multivalued Function Partial Function Countable Family Composition Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Arbib and E. G. Manes, Partially-additive categories and the semantics of flow diagrams, Journal of Algebra 62, 1980, 203–227.Google Scholar
  2. 2.
    M. A. Arbib and E. G. Manes, The pattern-of-calls expansion is the canonical fixpoint for recursive definitions, Journal ACM 29, 1982, 557–602.Google Scholar
  3. 3.
    S. L. Bloom and R. Tindell, Compatible orderings on the metric theory of trees, SIAM Journal of Computing 9, 1980, 683–691.Google Scholar
  4. 4.
    E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976.Google Scholar
  5. 5.
    C. C. Elgot, Monadic computation and iterative algebraic theories, in "Proceedings of Logic Colloquium '73" (H. E. Rose and J. C. Shepherdson, Eds.), North-Holland, Amsterdam, 1975.Google Scholar
  6. 6.
    D. Gries, The Science of Programming, Springer-Verlag, 1983.Google Scholar
  7. 7.
    I. Guessarian, Algebraic Semantics, Lecture Notes in Computer Science 99, Springer-Verlag, 1981.Google Scholar
  8. 8.
    C. A. R. Hoare, An axiomatic basis for computer programming, Communications ACM 12, 1969, 576–580, 583.Google Scholar
  9. 9.
    E. G. Manes, Additive Domains, Proceedings of the Conference on Mathematical Foundations of Programming Languages, Kansas State U., Springer-Verlag, to appear.Google Scholar
  10. 10.
    E. G. Manes, Assertion semantics in a control category, submitted to Theoretical Computer Science.Google Scholar
  11. 11.
    E. G. Manes and M. A. Arbib, Algebraic Approaches to Program Semantics, Springer-Verlag, 1986 (in press).Google Scholar
  12. 12.
    E. G. Manes and D. B. Benson, The inverse semigroup of a sum-ordered semiring, Semigroup Forum 31, 1985, 129–152.Google Scholar
  13. 13.
    D. S. Scott, Lattice theory, data types and semantics, in R. Rustin (Ed.), Formal Semantics of Programming Languages, Prentice-Hall, 1970, 65–106.Google Scholar
  14. 14.
    D. S. Scott, The lattice of flow diagrams, Lecture Notes in Computer Science 188, Springer-Verlag, 1971, 311–366.Google Scholar
  15. 15.
    M. E. Steenstrup, Sum-Ordered Partial Semirings, Ph.D. thesis, COINS Technical Report #85-01, 1985; Department of Computer and Information Science, University of Massachusetts, Amherst, MA 01003, USA.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Ernest G. Manes
    • 1
  1. 1.Department of Mathematics and Statistics Lederle Research Center TowerUniversity of MassachusettsAmherstUSA

Personalised recommendations