Category theory and logic

  • Axel Poigné
Part I Tutorials
Part of the Lecture Notes in Computer Science book series (LNCS, volume 240)


Inference Rule Deduction System Proof Theory Heyting Algebra Finite Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Abramsky 86]
    S.Abramsky, Domain Theory in Logical Form, Manuscript 1985Google Scholar
  2. [Barendregt 84]
    H.Barendregt, The Lambda Calculus, North Holland 1984Google Scholar
  3. [Barr&Wells 85]
    M.Barr,C.Wells, Toposes, triples and theories, Springer Verlag 1985Google Scholar
  4. [Burstall-Lamport 84]
    R.M.Burstall, B.Lampson, A Kernel Language for Abstract Data Types and Modules, Proc. Symp. on Semantics of Data Types, Sophia Antipolis, LNCS 173, 1984Google Scholar
  5. [Cardelli 84]
    AMBER, AT&T Bell Labs, Techn. Memo. 112671-840924-10TM, 1984Google Scholar
  6. [Coquand 85]
    Th.Coquand, Une Théorie des Constructions, Thèse 3eème Cycle, Paris 1985Google Scholar
  7. [Coquand-Huet 86]
    Th.Coquand, G.Huet, A Calculus of Constructions, To appear JCSS 1986Google Scholar
  8. [Curien 86]
    P.-L. Curien, Categorical Combinators, Sequential Algorithms and Functional Programming, Pitman, London 1981Google Scholar
  9. [Curry-Feys 58]
    H.B.Curry, R.Feys, W.Craig, Combinatory Logic I, North Holland 1958Google Scholar
  10. [Dijkstra 76]
    E.Dijkstra, A. Discipline of Programming, Prentice Hall 1976Google Scholar
  11. [Fourman-Scott 77]
    Sheaves and Logic, In: Applications of Sheaves, Proc. Durham, LNiMath 753, 1979Google Scholar
  12. [Freyd 72]
    P.Freyd, Aspects of Topoi, Bull. Austral. Math. Soc. 7, 1972Google Scholar
  13. [Girard 72]
    J.Y.Girard, Interprétation fonctionelle er élimination des coupures de l'arithmétique d'ordre supérieur, Thèse de doctorat d'état, Paris VII, 1972Google Scholar
  14. [Goldblatt 79]
    R.Goldblatt, The Categorical Analysis of Logic, North Holland 1979Google Scholar
  15. [Gordon 79]
    M.Gordon, R.Milner, C.Wadsworth, Edinburgh LCF, LNCS 78, 1979Google Scholar
  16. [Herrlich-Strecker 73]
    H.Herrlich, G.E.Strecker, Category Theory, Allyn and Bacon, 1973Google Scholar
  17. [HJP 80]
    J.M.E.Hyland, P.T.Johnstone, A.M.Pitts, Tripos Theory, Math. Proc. Camb. Phil. Soc. 88, 1980Google Scholar
  18. [Howard 68,80]
    W.A.Howard, The Formulae-as-Types Notion of Construction, In: To H.B.Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism, ed. J.P.Seldin and J.R.Hindley, Academic Press 1980Google Scholar
  19. [Hughes-Cresswell 68]
    G.E.Hughes, M.J.Cresswell, An Introduction to Modal Logic, Methuen, 1968Google Scholar
  20. [Huwig-Poigné 86]
    H.Huwig, A.Poigné, On Inconsistencies Caused by Fixpoints in a Cartesian Closed Category, Techn. Ber. 216, Abt. Informatik, Universität Dortmund, 1986Google Scholar
  21. [Hyland 82]
    J.M.E.Hyland, The Effective Topos, In: A.S.Troelstra, D.vanDalen (eds.) The L.E.J.Brouwer Centenary Symposium, North Holland 1982Google Scholar
  22. [Hyland 85]
    J.M.E.Hyland, A Model of Second-Order λ-Calculus, Talk at the Workshop on Category Theory in Computer Science, Guildford 1985Google Scholar
  23. [Johnstone 77]
    P.T.Johnstone, Topos Theory, Cambridge University Press 1977Google Scholar
  24. [Johnstone 82]
    P.T.Johnstone, Stone Spaces, Cambridge University Press 1982Google Scholar
  25. [Lambek 68]
    J.Lambek, Deductive Systems and Categories I, J.Math. Systems Theory 2, 1968Google Scholar
  26. [Lambek 69]
    J.Lambek, Deductive Systems and Categories II, LNiMath 86, 1969Google Scholar
  27. [Lambek 72]
    J.Lambek, Deductive Systems and Categories III, LNiMath 274, 1972Google Scholar
  28. [Lambek 80]
    J.Lambek, From Lambda Calculus to Cartesian Closed Categories, In: To H.B.Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism, ed. J.P.Seldin and J.R.Hindley, Academic Press 1980Google Scholar
  29. [Lambek 80]
    J.Lambek, From Types to Sets, Advances in Mathematics 36, 1980Google Scholar
  30. [Lambeck-Scott 80]
    J.Lambek, Intuitionistic Type Theory and the Free Topos, J. Pure and Applied Algebra 19, 1980Google Scholar
  31. [Lambek-Scott 81]
    J.Lambek, P.Scott, Intuitionistic Type Theory and Foundations, J. of Phil. Logic 10, 1981Google Scholar
  32. [Lambek-Scott 86]
    J.Lambek, P.Scott, Introduction to Higher Order Categorical Logic, Cambridge University Press 86Google Scholar
  33. [Lawvere 64]
    F.W.Lawvere, An Elementary Theory of the Category of Sets, Proc. Nat. Acad. Sci. 52, 1964Google Scholar
  34. [Lawvere 69]
    F.W.Lawvere, Adjointness in Foundations, Dialectica 23, 1969Google Scholar
  35. [Lawvere 70]
    F.W.Lawvere, Equality in Hyperdoctrines and Comprehension Schema as an Adjoint Functor, Proc. Amer. Math. Soc., Applications of Categorical Algebra, 1970Google Scholar
  36. [MacLane 71]
    S.MacLane, Categories for the Working Mathematician, Springer Graduate Texts in Mathematics 1971Google Scholar
  37. [Makkai-Reyes 77]
    M.Makkai, G.E.Reyes, First Order Categorical Logic, LNiMath 611, 1977Google Scholar
  38. [Martin-Löf 73]
    P.Martin-Löf, An Intuitionistic Theory of Types, Proc. Bristol Logic Coll. '73, North Holland 1973Google Scholar
  39. [Martin-Löf 79]
    P.Martin-Löf, Constructive Mathematics and Computer Programming, Proc. 6th Int. Congress for Logic, Methodology and Philosophy of Sciences, North-Holland 1979Google Scholar
  40. [Milner 77]
    R.Milner, Fully Abstract Models of Typed Lambda Calculi, TCS 4, 1977Google Scholar
  41. [Paré-Schumacher 78]
    R.Paré, D.Schumacher, Abstract Families and the Adjoint Functor Theorem, In: P.T.Johnstone, R.Paré (eds.) Indexed Categories and Their Application, LNiMath 661, 1978Google Scholar
  42. [Pitts 81]
    A.M. Pitts, The Theory of triposes, Dissertation, Cambridge 1981Google Scholar
  43. [Plotkin 77]
    G.Plotkin, LCF Considered as a Programming Language, TCS 5, 1977Google Scholar
  44. [Prawitz 65]
    D. Prawitz, Natural deduction: a Proof Theoretic Study, Almqvist and Wiksell, Stockholm 1965Google Scholar
  45. [Reynolds 74]
    Reynolds 74Google Scholar
  46. [Scott 77]
    D.S.Scott, Identity and Existence in Intutionistic Logic, In M.P.Fourman, C.J.Mulvey, D.S.Scott (eds.) Applications of Sheaves, LNiMath 753, 1977Google Scholar
  47. [Seely 83]
    R.A.G.Seely, Hyperdoctrines, Natural Deduction and the Beck Condition, Zeitschr. f. math. Logik und Grundlagen d. Math. bd.29, 1983Google Scholar
  48. [Seely 84]
    R.A.G.Seely, Locally Cartesian Closed Categories and Type Theory, Math. Proc. Camb. Phil. Soc. 95, 1984Google Scholar
  49. [Smyth 83]
    M.B.Smyth, Power Domains and Predicate Transformers: A Topological View, Proc. ICALP'83, LNCS 154, 1983Google Scholar
  50. [Szabo 78]
    M.E.Szabo, Algebra of Proofs, North Holland 1978Google Scholar
  51. [Tait 67]
    W.Tait, Intensional Interpretation of Functionals of Finite Type,J. Symb. Logic 32, 1967Google Scholar
  52. [Taylor 86]
    P.Taylor, Internal Completeness of Categories of Domains, this VolumeGoogle Scholar
  53. [Wraith 75]
    G.C.Wraith, Lectures on Elementary Topoi, In: F.W.Lawvere, C.Maurer, G.C.Wraith (eds.) Model Theory and Topoi, LNiMath 445, 1975Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Axel Poigné

There are no affiliations available

Personalised recommendations