Cartesian closure — Higher types in categories

  • Axel Poigné
Part I Tutorials
Part of the Lecture Notes in Computer Science book series (LNCS, volume 240)


Natural Transformation Partial Function Category Theory Monoidal Category High Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Arbib-Manes 75]
    M.A. Arbib, E.G. Manes, Arrows, Structures and Functors — The Categorical Imperative, Academic Press, New York-San Francisco-London 1975Google Scholar
  2. [Barendregt 84]
    H.Barendregt, The Lambda Calculus, North Holland 1984Google Scholar
  3. [Berry 81]
    G.Berry, Some Syntactic and Categorical Constructions of Lambda-Calculus Models, Rapport INRIA 80, 1981Google Scholar
  4. [Curien 86]
    P.-L. Curien, Categorical Combinators, Sequential Algorithms and Functional Programming, Pitman, London 1981Google Scholar
  5. [Eilenberg-Kelly 66]
    S.Eilenberg, G.M.Kelly, Closed Categories, Proc. Conf. on Categorical Algebra at La Jolla, Springer Verlag 1966Google Scholar
  6. [Hennessy 80]
    M.C.B.Hennessy, The Semantics of Call-by-value and Call-by-name in a Non-deterministic Environment, SIAM J. Comp. 1980Google Scholar
  7. [Lambek 80]
    J.Lambek, From Lambda Calculus to Cartesian Closed Categories, In To H.B.Curry: Essays on Combinatiry Logic, Lambda-Calculus and Formalism, ed. J.P.Seldin and J.R.Hindley, Academic Press 1980Google Scholar
  8. [Lambeck-Scott 86]
    J.Lambek, P.Scott, Introduction to Higher Order Categorical Logic, Cambridge University Press 86Google Scholar
  9. [MacLane 71]
    S.MacLane, Categories for the Working Mathematician, Springer Graduate Texts in Mathematics 1971Google Scholar
  10. [Lawvere 63]
    F.W.Lawvere, Functorial Semantics of Algebraic Theories, Dissertation, Columbia University, 1963Google Scholar
  11. [Moggi 86]
    E.Moggi, Categories of Partial Morphisms & the λp-Calculus, this volumeGoogle Scholar
  12. [Pfender 74]
    M.Pfender, Universal Algebra in S-Monoidal Categories, Algebra Berichte Nr. 20, Universität München 1974Google Scholar
  13. [Poigné 79]
    A.Poigné, On the Construction of Free Algebras in S-Monoidal Categories, Dissertation, Dortmund 1979 (in German)Google Scholar
  14. [Poigné 86]
    A.Poigné, On Specifications, Theories, and Models with Higher Types, Information & Control 86Google Scholar
  15. [Scott 77]
    D.S.Scott, Identity and Existence in Intutionistic Logic, In M.P.Fourman, C.J.Mulvey, D.S.Scott (eds.) Applications of Sheaves, LNiMath 753, 1977Google Scholar
  16. [Scott 80]
    D.S.Scott, Relating Theories of Lambda Calculus, In To H.B.Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism, ed. J.P.Seldin and J.R.Hindley, Academic Press 1980Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Axel Poigné

There are no affiliations available

Personalised recommendations