• David E. Rydeheard
Part I Tutorials
Part of the Lecture Notes in Computer Science book series (LNCS, volume 240)


Natural Transformation Category Theory Finite Automaton Free Algebra Left Adjoint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arbib M. and Manes E. (1974) Machines in a Category: An Expository Introduction. SIAM Review, Vol. 16 no. 2.Google Scholar
  2. Arbib M. and Manes E. (1975) Arrows, Structures and Functors. Academic Press.Google Scholar
  3. Birkhoff G. (1938) Structure of Abstract Algebras. Proc. Cambridge Phil. Soc. 31. pp 433–454.Google Scholar
  4. Burstall R.M. (1980) Electronic Category Theory. Proc. Ninth Annual Symposium on the Mathematical Foundations of Computer Science. Rydzyua, Poland.Google Scholar
  5. Burstall R.M. and Landin P.J. (1969) Programs and Their Proofs: An Algebraic Approach. Machine Intelligence 4. Edinburgh Univ. Press. pp 17–44.Google Scholar
  6. Burstall R.M. and Rydeheard D.E. (1986) Computational Category Theory. Draft Book.Google Scholar
  7. Cohn P.M. (1966) Universal Algebra. Harper and Row, New York-Evanston-London.Google Scholar
  8. Eilenberg S. and Moore J.C. (1965) Adjoint Functors and Triples. Illinois J. Math. 9. pp 381–398.Google Scholar
  9. Goguen J.A. (1973) Realisation is Universal. Math. Sys. Theory 6. pp 359–374.Google Scholar
  10. Goguen J.A. and Meseguer J. (1986) Semantics of Computation. Draft Book.Google Scholar
  11. Goguen J.A., Thatcher J.W. and Wagner E.G. (1978) An Initial Algebra Approach to the Specification, Correctness and Implementation of Abstract Data Types. Current Trends in Prog. Methodology IV, Data Structuring. Prentice Hall. pp 80–149.Google Scholar
  12. Goguen J.A., Thatcher J.W., Wagner E.G. and Wright J. (1975) Abstract Data Types as Initial Algebras and the Correctness of Data Representations. In ‘Computer Graphics, Pattern Recognition and Data Structure’ pp 89–93. IEEE Press.Google Scholar
  13. Goldblatt R. (1979) Topoi—The categorial analysis of logic. Studies in Logic and the Foundations of Mathematics. Vol 98. North-Holland.Google Scholar
  14. Herrlich H. and Strecker G.E. (1973) Category Theory. Allyn and Bacon.Google Scholar
  15. Kan D.M. (1958) Adjoint Functors. Trans Amer. Math. Soc. 87. pp 294–329.Google Scholar
  16. Mac Lane S. (1948) Groups, Categories and Duality. Proc. Nat. Academy of Science. USA. 34. pp 263–267.Google Scholar
  17. Mac Lane S. (1965) Categorical Algebra. Bull. Amer. Math. Soc. 71. pp 40–106.Google Scholar
  18. Mac Lane S. (1971) Categories for the Working Mathematician. Springer-Verlag, New York.Google Scholar
  19. Manes E.G. (1976) Algebraic Theories. Springer-Verlag, New York.Google Scholar
  20. Milner R. (1978) A theory of type polymorphism in programming. J. Comp. Sys. Sci. 17, 3. pp. 348–375.Google Scholar
  21. Milner R. (1984) A Proposal for Standard ML. Proc. A.C.M. Symp. on LISP and Functional Programming.Google Scholar
  22. Rydeheard. D.E. and Burstall R.M. (1985) The Unification of Terms: A Category-theoretic Algorithm. Internal Report UMCS-85-8-1 Dept. Comp. Sci. University of Manchester.Google Scholar
  23. Rydeheard D.E. and Burstall R.M. (1985) Monads and Theories—A Survey for Computation. In Algebraic Methods in Semantics (Chapter 16) Eds. Nivat and Reynolds. Cambridge University Press.Google Scholar
  24. Schubert H. (1972) Categories. Springer-Verlag.Google Scholar
  25. Wand M. (1979) Final Algebra Semantics and Data Type Extensions. JCSS 19. pp 27–44.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • David E. Rydeheard

There are no affiliations available

Personalised recommendations