Elements of categorical reasoning : Products and coproducts and some other (co-)limits

  • Axel Poigné
Part I Tutorials
Part of the Lecture Notes in Computer Science book series (LNCS, volume 240)


Category Theory Universal Property Congruence Relation Functional Programming Graph Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Adamek-Koubek 79]
    J.Adamek, V.Koubek, Least Fixed Point of a Functor, JCSS 19, 1979Google Scholar
  2. [Backus 78]
    J.Backus, Can Programming be Liberated from the von Neumann Style?, CACM 21, 1978Google Scholar
  3. [Burstall-Goguen 80]
    R.M. Burstall, J.A.Goguen, Semantics of CLEAR, A Specification Language, Abstract Software Specifications, D.Bjorner (ed.), Proc. 1979 Copenhagen Winter School, LNCS 86, 1980Google Scholar
  4. [Ehrich 82]
    H.-D.Ehrich, On the Theory of Specification, Implementation and Parameterization of Abstract Data Types, JACM 29, 1982Google Scholar
  5. [Ehrig 79]
    H.Ehrig, Introduction to the Algebraic Theory of Graph Grammars, Proc. Workshop on Graph Grammars and Their Applications to Computer Science and Biology, LNCS 73, 1979Google Scholar
  6. [Ehrig-Mahr 85]
    H.Ehrig, B.Mahr, Fundamentals of Algebraic Specification I, Springer Verlag 1985Google Scholar
  7. [EKTWW 84]
    H.Ehrig, H.-J.Kreowski, J.W.Thatcher, E.G.Wagner, J.B.Wright, Parameter Passing in Algebraic Specification Language, TCS 33, 1984Google Scholar
  8. [Goguen-Meseguer 85]
    J.A.Goguen, J.Meseguer, EQLOG: Equality, Types, and Generic Modules for Logic Programming, In: Functional and Logic Programming, ed. DeGroot and Lindstrom, Prentice Hall 1985Google Scholar
  9. [Herrlich-Strecker 73]
    H.Herrlich, G.E.Strecker, Category Theory, Allyn and Bacon 1973Google Scholar
  10. [Huwig-Poigné 86]
    H.Huwig, A.Poigné, On Inconsistencies Caused by Fixpoints in a Cartesian Closed Category, Techn. Ber. 216, Abt. Informatik, Universität Dortmund, 1986Google Scholar
  11. [Johnstone 82]
    P.T.Johnstone, Stone Spaces, Cambridge University Press 1982Google Scholar
  12. [MacLane 71]
    S.MacLane, Categories for the Working Mathematician, Springer Graduate Texts in Mathematics 1971Google Scholar
  13. [Plotkin-Smyth 77]
    M.B.Smyth, G.D.Plotkin, The Category-Theoretic Solution of Recursive Domain Equations, Proc. 18th FOCS, 1977, full paper: SIAM Journal on Control 1983Google Scholar
  14. [Scott 72]
    D.S.Scott, Continuous lattices, In: F.W.Lawvere (ed.), Toposes, Algebraic Geometry and Logic, LNi Math 274, 1972Google Scholar
  15. [Scott 80]
    D.S.Scott, Relating Theories of Lambda Calculus, In To H.B.Curry: Essays on Combinatoiry Logic, Lambda-Calculus and Formalism, ed. J.P.Seldin and J.R.Hindley, Academic Press 1980Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Axel Poigné

There are no affiliations available

Personalised recommendations