Advertisement

What is a model? A consumer's perspective on semantic theory

  • Jon Shultis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 239)

Keywords

Categorical Model Inference Rule Internal Model Semantic Theory Category Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. P. Barendregt, The Lambda-Calculus: Its Syntax and Semantics, North-Holland, 1981.Google Scholar
  2. 2.
    J. L. Bates and R. L. Constable, Proofs as Programs, ACM Trans. Prog. Lang. and Systems 7, 1 (January 1985), 113–136.Google Scholar
  3. 3.
    G. Berry, Some Syntactic and Categorical Constructions of Lambda-Calculus Models, INRIA Rapport de Recherche No. 80, June 1981.Google Scholar
  4. 4.
    G. Berry and P. L. Curien, Sequential Algorithms on Concrete Data Structures, Theoretical Computer Science,, 1982.Google Scholar
  5. 5.
    S. D. Brookes, C. A. R. Hoare and A. W. Roscoe, A Theory of Communicating Sequential Processes, J. ACM 31, 3 (July 1984), 560–599.Google Scholar
  6. 6.
    R. M. Burstall and J. A. Goguen, Putting Theories Together To Make Specifications, 5th International Joint Conference on Artificial Intelligence,, 1977, 1045–1058.Google Scholar
  7. 7.
    R. L. Constable and D. R. Zlatin, The Type Theory of PL/CV3, ACM Trans. Prog. Lang. and Systems 6, 1 (January 1984), 94–117.Google Scholar
  8. 8.
    M. P. Fourman, The Logic of Topoi, in Handbook of Mathematical Logic, J. Barwise (ed.), North-Holland, 1977, 1054–1090.Google Scholar
  9. 9.
    R. Goldblatt, Topoi: the Categorial Analysis of Logic, North-Holland, 1979.Google Scholar
  10. 10.
    M. J. Gordon, A. J. Milner and C. P. Wadsworth, Edinburgh LCF, in Lecture Notes in Computer Science, Vol. 78, Springer, Berlin, 1979.Google Scholar
  11. 11.
    P. T. Johnstone, Topos Theory, Academic Press, 1977.Google Scholar
  12. 12.
    P. T. Johnstone and R. Paré, eds., Indexed Categories and Their Applications, Springer Lecture Notes in Mathematics, 1978.Google Scholar
  13. 13.
    S. C. Kleene, On the Interpretation of Intuitionistic Number Theory, J. Symbolic Logic 10, (1945), 109–124.Google Scholar
  14. 14.
    F. W. Lawvere, Adjointness in Foundations, Dialectica 23, (1969), 281–296.Google Scholar
  15. 15.
    F. W. Lawvere, Quantifiers and Sheaves, in Actes des Congrés International des Mathématiques, tome I, 1970, 329–334.Google Scholar
  16. 16.
    F. W. Lawvere, ed., Toposes, Algebraic Geometry, and Logic, Springer Lecture Notes in Mathematics, 1972.Google Scholar
  17. 17.
    F. W. Lawvere, C. Maurer and G. C. Wraith, eds., Model Theory and Topoi, Springer Lecture Notes in Mathematics, 1975.Google Scholar
  18. 18.
    P. Martin-Löf, Constructive Mathematics and Computer Programming, 6th Int'l. Congress for Logic, Methodology, and Philosophy of Science, Hannover, Aug. 1979.Google Scholar
  19. 19.
    A. R. Meyer, What is a Lambda-Calculus Model?, MIT LCS/TM-171, August 1980.Google Scholar
  20. 20.
    D. Scott, Constructive Validity, in Proc. Symposium on Automatic Deduction, Lecture Notes in Mathematics 125, Springer-Verlag, 1970, 237–275.Google Scholar
  21. 21.
    D. S. Scott and C. Strachey, Toward a Mathematical Semantics for Computer Languages, in Proc. Symposium on Computers and Automata, J. Fox (ed.), Polytechnic Institute of New York, New York, 1971, 19–46.Google Scholar
  22. 22.
    D. Scott, Data Types as Lattices, SIAM J. Comput. 5, 3 (Sept. 1976), 522–587.Google Scholar
  23. 23.
    M. B. Smyth and G. D. Plotkin, The Category-Theoretic Solution of Recursive Domain Equations, Proc. 18th Symposium on Mathematical Foundations of Computer Science,, 1977, 13–17.Google Scholar
  24. 24.
    M. B. Smyth, Effectively Given Domains, Theoretical Computer Science 5, (1978),.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Jon Shultis
    • 1
  1. 1.Department of Computer ScienceUniversity of ColoradoBoulderUSA

Personalised recommendations