Fast parallel algorithms for eigenvalue and singular value computations

  • Marian Vajteršic
Namerical Algorithms (Session 3.2)
Part of the Lecture Notes in Computer Science book series (LNCS, volume 237)


Three parallel algorithms for the eigensolution of real symmetric matrices of order n on a SIMD-type parallel computer with an associative memory are considered. The algorithms realize various parallel orderings of the Jacobi orthogonalization procedure. A detailed description of the parallel computational process is given which allows the power of the machine to be exploited. The arithmetic parallel complexity achieved for the complete solution is 0(n), the number of parallel data transfers is 0(n log n). The results of algorithm simulations are included.


Singular Value Decomposition Parallel Algorithm Parallel Machine Associative Memory Parallel Scheme 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Brent, R.P., Luk, F.T., A systolic architecture for the singular value decomposition. Tech. Rep. TR-CS-92-09, Aust.Nat. Univ. (1982).Google Scholar
  2. [2]
    Modi, J.J., Pryce, J.D., Efficient implementation of Jacobi's diagonalization method on the DAP. Numer. Math. 46, 3 (1985), 443–454.Google Scholar
  3. [3]
    Richter, K., Parallel computer system SIMD. In: Artif. Intelligence and Inf.-Control Syst. of Robots, I. Plander, Ed., North-Holland, Amsterdam, 1984.Google Scholar
  4. [4]
    Rutishauser, H., The Jacobi method for real symmetric matrices. In: Handbook for Automatic Computation 2, J.H. Wilkinson and C. Reinsch, Eds., Springer-Verlag, Berlin, 1971.Google Scholar
  5. [5]
    Sameh, A.H., On Jacobi and Jacobi-like algorithms for a parallel computer. Math. Comput. 25 (1971), 579–590.Google Scholar
  6. [6]
    Vajteršic, M., Some linear algebra algorithms proposed for a parallel associative computer. In: Proc. Algorithms 85, JSMF Bratisava, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Marian Vajteršic
    • 1
  1. 1.Institute of Technical CybernetisSlovak Academy of SciencesBratislavaCzechoslovakia

Personalised recommendations