Advertisement

Parallel algorithms on the cedar system

  • M. Berry
  • W. Harrod
  • S. Lo
  • B. Philippe
  • K. Gallivan
  • W. Jalby
  • U. Meier
  • A. H. Sameh
Invited Addresses
Part of the Lecture Notes in Computer Science book series (LNCS, volume 237)

Keywords

Cache Size Plane Rotation Algebraic Eigenvalue Problem Householder Transformation Sturm Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BeSa86]
    M. Berry and A. Sameh, Multiprocessor Jacobi schemes for dense symmetric eigenvalue and singular value decompositions, CSRD Report No. 546, CSRD, University of Illinois at Urbana-Champaign, 1986.Google Scholar
  2. [BiVa85]
    C. Bischoff and C Van Loan, The WY representation for products of Householder Matrices, TR 85-681, Department of Computer Science, Cornell University, 1985.Google Scholar
  3. [BrJo74]
    O. Bronlund and T. Johnsen, QR-factorization of partitioned matrices, Computer Methods in Applied Mechanics and Engineering 3, pp. 153–172, 1974.Google Scholar
  4. [ChKS78]
    S. Chen, D. Kuck and A. Sameh, Practical parallel band triangular system solvers, ACM Trans. Math. Software, Vol. 4, pp. 270–277, 1978.Google Scholar
  5. [DBMS79]
    J. Dongarra, J. Bunch, C. Moler, and G. W. Stewart, LINPACK User's Guide, SIAM, 1979.Google Scholar
  6. [DCHH84]
    J. Dongarra, J. Du Croz, S. Hammarling, R. Hanson, A proposal for an extended set of fortran basic linear algebra subprograms, ACM SIGNUM, March 1985.Google Scholar
  7. [Diet76]
    G. Dietrich, A new formulation of the hypermatrix Householder-QR decomposition, Computer Methods in Applied Mechanics and Engineering 9, pp. 273–280, 1976.Google Scholar
  8. [DoKH85]
    J. Dongarra, L. Kaufman, and S. Hammarling, Squeezing the most out of eigenvalue solvers on high-performance computers, Technical Memorandum No. 46, MCSD, Argonne National Laboratory, 1985.Google Scholar
  9. [DoSo86]
    J. Dongarra and D. Sorensen, A fully parallel algorithm for the symmetric eigenvalue problem, Argonne National Laboratory Report MCS-JM-62, Jan 1986. [Submitted to SISSC]Google Scholar
  10. [DoSo86]
    J. Dongarra, D. Sorensen, Linear algebra on high performance computers, Technical Report ANL-82-2, Argonne National Laboratory, 1986.Google Scholar
  11. [GoVa83]
    G. Golub and C. Van Loan, Matrix Computations, The John Hopkins University Press, 1983.Google Scholar
  12. [FoMM77]
    G. Forsythe, M. Malcom and C. Moler, Computer Methods for Mathematical Computations, Prentice Hall, 1977.Google Scholar
  13. [Harr86]
    W. Harrod, Solving linear least squares problems on an Alliant FX/8, CSRD Report, CSRD, University of Illinois at Urbana-Champaign, 1986.Google Scholar
  14. [Huan74]
    H. Huang, A parallel algorithm for symmetric tridiagonal eigenvalue problems. CAC Document No. 109, Center for Advanced Computation, University of Illinois at Urbana-Champaign, Feburary 1974.Google Scholar
  15. [JaMe86]
    W. Jalby, U. Meier, Optimizing matrix operations on a parallel multiprocessor with a two-level memory hierarchy, Proc. ICPP, Aug. 1986.Google Scholar
  16. [KuSa71]
    D. Kuck and A. Sameh, Parallel computation of eigenvalues of real matrices. IFIP Congress 1971, North-Holland, Vol 2, pp. 1266–1272, 1972.Google Scholar
  17. [LoPS86]
    S. Lo, B. Philippe and A. Sameh, A multiprocessor algorithm for the symmetrics tridiagonal eigenvalue problem. CSRD Report no. 513, CSRD, University of Illinois at Urbana-Champaign, 1986. [to be published in SISSC].Google Scholar
  18. [LukF80]
    F. Luk, Computing the singular-value decomposition on the Illiac IV, ACM Trans. Math. Software, vol. 6, no. 4, pp. 524–539, 1980.Google Scholar
  19. [PeWi75]
    G. Peters, J. Wilkinson, On the stability of Gauss-Jordan elimination with pivoting, CACM 18, pp. 20–24, Jan. 1975.Google Scholar
  20. [Same71]
    A. Sameh, On Jacobi and Jacobi-like algorithms for a parallel computer, Math. Comp., vol. 25, pp. 579–590, 1971.Google Scholar
  21. [SBDG76]
    B. Smith, J. Boyce, J. Dongarra, B. Garbow, Y. Ikebe, V. Klema, and C. B. Moler, Matrix Eigensystem Routines — EISPACK Guide, Second Edition, Springer-Verlag, Berlin, 1976.Google Scholar
  22. [Wilk65]
    J. Wilkinson, The Algebraic Eigenvalue Problem, Oxford, 1965.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • M. Berry
    • 1
  • W. Harrod
    • 1
  • S. Lo
    • 1
  • B. Philippe
    • 1
  • K. Gallivan
    • 1
  • W. Jalby
    • 1
  • U. Meier
    • 1
  • A. H. Sameh
    • 1
  1. 1.Center for Supercomputing Research and DevelopmentUniversity of Illinois at Urbana-ChampaignUrbana

Personalised recommendations