Quark-model perspectives on three-nucleon forces in nuclear physics

  • W. -Y. P. Hwang
Working Group 4: Short-Range Phenomena
Part of the Lecture Notes in Physics book series (LNP, volume 260)


We stress the point that, as long as nucleons possess substructure of some kind, three-nucleon forces must exist in different forms. Using a quark model to characterize the nucleon substructure, we may classify three-nucleon forces into three distinct categories, viz.: (i) Three-nucleon forces of type I, such as the Tucson-Melbourne (2π)-exchange three-body force, which can be formulated in terms of the hadron degrees of freedom, (ii) three-nucleon forces of type II which describe modifications to nucleon-nucleon interactions arising from the fact that the quark substructure of the two interacting nucleons is modified by the presence of a third nucleon, and (iii) three-nucleon forces of type III which are induced by the fact that, as three nucleons overlap one another, the constituents may rearrange among themselves to minimize the total energy. Possible manifestions of these three-nucleon forces, especially those of type II, are discussed in some detail.


Quark Model Nuclear Medium Cutoff Parameter Binding Energy Difference Triton Binding Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Witten, Nucl. Phys. B223, 422, 433 (1983); M. Rho, A.S. Goldhaber, and G.E. Brown, Phys. Rev. Lett. 51, 747 (1983).CrossRefGoogle Scholar
  2. 2.
    C.R. Chen, G.L. Payne, J.L. Friar, and B.F. Gibson, Phys. Rev. C33, 1740 (1986).CrossRefGoogle Scholar
  3. 3.
    Z.-J. Cao and W-Y. P. Hwang, Phys. Rev. C29, 1 (1984).Google Scholar
  4. 4.
    A.O. Gattone and W-Y. P. Hwang, Phys. Rev. D31, 2874 (1985).Google Scholar
  5. 5.
    J.J. Aubert et al., Phys. Lett. 123B, 275 (1983); A. Bodek et al., Phys. Rev. Lett. 51, 534 (1983); R.G. Arnold et al., Phys. Rev. Lett. 52, 727 (1984).CrossRefGoogle Scholar
  6. 6.
    See, e.g., R.P. Bickerstaff, M.C. Birse, and G.A. Miller, Phys. Rev. Lett. 53, 2532 (1984) and references therein; S.V. Akulinichev et al., Phys. Rev. Lett. 55, 2239 (1985).CrossRefGoogle Scholar
  7. 7.
    J.A. Nolen, Jr. and J.P. Schiffer, Phys. Lett. 29B, 396 (1969).Google Scholar
  8. 8.
    J.S. O'Connell et al., Phys. Rev. Lett. 53, 1627 (1984).CrossRefGoogle Scholar
  9. 9.
    R.A. Brandenberg, S.A. Coon, and P.U. Sauer, Nucl. Phys. A294, 305 (1978).CrossRefGoogle Scholar
  10. 10.
    W-Y. P. Hwang, Phys. Rev. D29, 435 (1984) and D32, 824 (1985).Google Scholar
  11. 11.
    W-Y. P. Hwang, Phys. Rev. D31, 2826 (1985).Google Scholar
  12. 12.
    W-Y. P. Hwang, Ann. Phys. (N.Y.), submitted for publication.Google Scholar
  13. 13.
    K. Erkelenz, Physics Reports 13, 191 (1974); K. Holinde, Physics Report 68, 122 (1981).CrossRefGoogle Scholar
  14. 14.
    W.T.H. Van Oers, Comments Nucl. Part. Phys. 10, 251 (1982); E.M. Henley and G.A. Miller, in “Mesons in Nuclei”, (M. Rho and D.H. Wilkinson, Eds.), Vol. 1, p. 405, North-Holland, Amsterdam, 1979.Google Scholar
  15. 15.
    B. Gabioud et al. Phys. Rev. Lett. 42 (1979), 508; Phys. Lett. 103B, 9 (1981).CrossRefGoogle Scholar
  16. 16.
    T.E.O. Ericson and G.A. Miller, Phys. Lett. 132B, 32 (1983).CrossRefGoogle Scholar
  17. 17.
    E.M. Henley and L.K. Morrison, Phys. Rev. 141, 1489 (1966).CrossRefGoogle Scholar
  18. 18.
    J.W. Negele, Nucl. Phys. A165, 305 (1971).CrossRefGoogle Scholar
  19. 19.
    I. Sick, Phys. Lett. 157B, 13 (1985); R.D. McKeown, Phys. Rev. Lett. 56, 1452 (1986).CrossRefGoogle Scholar
  20. 20.
    T.T.S. Kuo, Z.Y. Ma, and R. Vinh Mau, Phys. Rev. C33, 717 (1986).Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • W. -Y. P. Hwang
    • 1
  1. 1.Department of Physics and Nuclear Theory CenterIndiana UniversityBloomington

Personalised recommendations