Relativistic particle quantum dynamics and three-body forces in the three-nucleon system

  • F. Coester
Working Group 4: Short-Range Phenomena
Part of the Lecture Notes in Physics book series (LNP, volume 260)


Questions concerning the effects of relativistic invariance can and should be separated from questions concerning the relevant subnucleon degrees of freedom that should be treated explicitly.

It is possible to formulate Poincard invariant quark models with a finite number of quarks. In such models hadron states have definite spin, a feature which is absent in light-front perturbative treatments of QCD. Substantial differences from nonrelativistic quark models can occur for very light quarks.

It is possible to formulate a Poincaré invariant three-nucleon dynamics which has the same qualitative features as the nonrelativistic dynamics, including semiphenomenological two- and three-body forces. The invariance requirements do not constrain the allowable two-body forces and impose only a weak constraint on acceptable three-body forces.

Work supported by the U.S. Department of Energy, Nuclear Physics Division, under contract W-31-109-ENG-38.


Light Quark Mass Operator Instant Form Charge Form Factor Front Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. P. Wigner, Ann. Math. 40, 149 (1939).MathSciNetGoogle Scholar
  2. 2.
    P. A. M. Dirac, Rev. Mod. Phys. 21 392 (1949).CrossRefGoogle Scholar
  3. 3.
    J. Schwinger, Phys. Rev. 127, 324 (1962).CrossRefGoogle Scholar
  4. 4.
    Shau-Jin Chung et al., Phys. Rev. D 7, 1133 (1973).CrossRefGoogle Scholar
  5. 5.
    S. N. Sokolov, Teor. Mat. Fiz. 24, 236 (1975).Google Scholar
  6. 6.
    H. Leutwyler and J. Stern, Ann. Phys. (N.Y.) 112, 94 (1978); B. L. G. Bakker, L. A. Kondratyuk and M. V. Terent'ev, Nucl. Phys. B158, 497 (1979); L. A. Kondratyuk and M. V. Terent'ev, Yad. Fiz. 31, 1087 (1980); F. M. Lev, Fortachr. Physik 31, 75 (1983).CrossRefGoogle Scholar
  7. 7.
    F. Coester and W. N. Polyzou, Phys. Rev. D 26, 1348 (1982); and references quoted therein.CrossRefGoogle Scholar
  8. 8.
    T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400 (1949); M. H. L. Pryce, Proc. R. Soc. London A 195, 62 (1949), definition (e).CrossRefGoogle Scholar
  9. 9.
    J. K. Lubanski, Physics 9, 310 (1942); V. Bargmann and E. P. Wigner, Proc. Nat. Acad. 34, 214 (1948).CrossRefGoogle Scholar
  10. 10.
    V. R. Berestetski and M. V. Terent'ev, Yad. Fiz. 24, 1044 (1976).Google Scholar
  11. 11.
    H. Melosh, Phys. Rev. D 9, 1095 (1974); see also F. M. Lev, in Ref. 6.CrossRefGoogle Scholar
  12. 12.
    S. J. Brodsky, et al., Banff Summer Institute on Particles and Fields (1981); A. Z. Capri and A. N. Kamal, eds. Plenum Press NY (1983). See Eq. (3.2) on p. 155.Google Scholar
  13. 13.
    M. V. Terent'ev, Yad. Fiz. 24, 207 (1976).Google Scholar
  14. 14.
    P. L. Chung, private communcation.Google Scholar
  15. 15.
    S. N. Sokolov, Dokl. Akad. Nauk USSR 233, 575 (1977) [Sov. Phys. Dokl. 22, 198 (1977)]; Teor. Mat. Fiz. 36, 193 (1978).Google Scholar
  16. 16.
    V. R. Pandharipande, these proceedings.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • F. Coester
    • 1
  1. 1.Argonne National LaboratoryArgonne

Personalised recommendations