Advertisement

The isospin structure of the 3-nucleon form factors

  • J. Martino
Working Group 1: Bound-State Properties
Part of the Lecture Notes in Physics book series (LNP, volume 260)

Abstract

The IS-IV separation of the 3-nucleon elastic form factors has required a careful re-analysis of the existing experimental data, followed by the functional representation (SOG) of their q2 behavior. A first result has been the extraction of a “consistent” set of experimental values for the RMS radii. The IS-IV separation itself Yields very clear conclusions for the magnetic part : evidence for a good control over the one-body operators and for the IV MEC calculations is found. For the charge form factors the possible conclusions about the disagreement between theory and experiment are dominated by the still open and puzzling PS-PV problem : further theoretical constraints on the MEC in charge form factors are required.

Keywords

Form Factor Magnetic Part Renormalization Factor Magnetic Form Factor Charge Form Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    See e.g. in J. Bernstein, Elementary Particles and their Currents, W.H. Frq2eeman and Company (1967), 82.Google Scholar
  2. 2).
    F.P. Juster et al., Phys. Rev. Lett. 55 (1985) 2261.CrossRefPubMedGoogle Scholar
  3. 3).
    J. Friar et al., Phys. Lett. 161B (1985) 241; see also in J. Friar, The Three-Nucleon Problem, Lectures given at “New Vistas in Electronuclear Physics”, Banff, Canada, (1985).CrossRefGoogle Scholar
  4. 4).
    I. Sick, Nucl. Phys. A218 (1974) 509.CrossRefGoogle Scholar
  5. 5).
    The detailed analysis of the presented experimental and theoretical results will be published elsewhere.Google Scholar
  6. 6).
    P. Dunn et al., Phys. Rev. C27 (1983) 71.CrossRefGoogle Scholar
  7. 7).
    C. Ottermann et al., Nucl. Phys. A436 (1985) 688.CrossRefGoogle Scholar
  8. 8).
    J. McCarthy et al., Phys. Rev. C15 (1977) 1396.CrossRefGoogle Scholar
  9. 9).
    Z. Szalata et al., Phys. Rev. C15 (1977) 1200.CrossRefGoogle Scholar
  10. 10).
    G. Retzlaff et al., Phys. Rev. C29 (1984) 1194.CrossRefGoogle Scholar
  11. 11).
    H. Collard et al., Phys. Rev. 138 (1965) B57.CrossRefGoogle Scholar
  12. 12).
    M. Bernheim et al., Lett. Nuov. Cim. 5 (1972) 431.Google Scholar
  13. 13).
    R. Arnold et al., Phys. Rev. Lett. 40 (1978) 1429.CrossRefGoogle Scholar
  14. 14).
    D. Beck et al., Phys. Rev. C30 (1984) 1403.CrossRefGoogle Scholar
  15. 15).
    D, Beck, Communication at the Present Symposium.Google Scholar
  16. 16).
    J.M. Cavedon et al., Phys. Rev. Lett. 49 (1982) 986.CrossRefGoogle Scholar
  17. 17).
    P. Sauer in Progress in Particle and Nuclear Physics, 16, and References therein. See also W. Strueve et al., Nucl. Phys. A405 (1983) 620.Google Scholar
  18. 18).
    S. Auffret et al., Phys. Rev. Lett. 55 (1985) 1362. See also in S. Auffret, Doctorat d'Etat, (1985), n° 9, Université Paris-Sud.CrossRefPubMedGoogle Scholar
  19. 19).
    M. Gari et al., Nucl. Phys. A264 (1976) 409.CrossRefGoogle Scholar
  20. 20).
    I. Sick, Communication at the Present Symposium, and see also J. Jourdan et al., Nucl. Phys. A453 (1986) 220.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • J. Martino
    • 1
  1. 1.DPhN-HE, CEN-SaclayGif-sur-Yvette CedexFrance

Personalised recommendations