Advertisement

The triton binding-energy problem

  • G. L. Payne
Working Group 1: Bound-State Properties
Part of the Lecture Notes in Physics book series (LNP, volume 260)

Abstract

The binding energy of the trinucleon system can now be calculated for a model Hamiltonian with both two- and three-body forces to an accuracy of 10 keV. At least 34 channels must be used in the numerical calculations to achieve this accuracy. All models which use only two-body interactions yield binding energies which are below the experimental values. The addition of either the Tucson-Melbourne or the Brazil two-pion-exchange three-nucleon force to the model Hamiltonian produces a large change in the binding energy. If one uses the commonly accepted value of the pion-nucleon form factor cutoff for the three-body force, then both three-body force models overbind the triton by about 1.5 MeV. Also, the addition of a three-body force to the model Hamiltonian does not produce significant changes in the charge density.

Keywords

Binding Energy Charge Density Charge Radius Faddeev Equation Total Wave Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. L. Friar, B. F. Gibson, and G. L. Payne, Annu. Rev. Nucl. Part Sci. 34, 403 (1984).CrossRefGoogle Scholar
  2. [2]
    J. Torre, J. J. Benayoun, and J. Chauvin, Z. Phys. A300, 319 (1981).Google Scholar
  3. [3]
    Muslim, Y. E. Kim, and T. Ueda, Phys. Lett. 115B, 273 (l982)CrossRefGoogle Scholar
  4. [3]a
    Muslim, Y. E. Kim, and T. Ueda, Nucl. Phys. A383, 399 (l983).Google Scholar
  5. [4]
    W. Glöckle, Nucl. Phys. A381, 343 (1982); A. Bömelburg andCrossRefGoogle Scholar
  6. [4]a
    W. Glöckle, Phys. Rev. C 28. 2149 (1983).CrossRefGoogle Scholar
  7. [5]
    J. Carlson, V. R. Pandharipande, and R. B. Wiringa, Nucl. Phys. A401, 59 (1983); R. B. Wiringa, Nucl. Phys. A401, 86 (1983).CrossRefGoogle Scholar
  8. [6]
    R. B. Wiringa, J. L. Friar, B. F. Gibson, G. L. Payne, and C. R. Chen, Phys. Lett. 143B, 273 (1984).Google Scholar
  9. [7]
    S. Ishikawa, T. Sasakawa, T. Sawada, and T. Ueda, Phys. Rev. Lett. 53, 1877 (1984).Google Scholar
  10. [8]
    S. A. Coon, M. D. Scadron, P. C. McNamee, B. R. Barrett, D. W. E. Blatt, and B. H. J. McKellar, Nucl. Phys. A317, 242 (1979); S. A. Coon and W. Glöckle, Phys. Rev. C 23, 1790 (1981).CrossRefGoogle Scholar
  11. [9]
    H. T. Coelho, T. K. Das, and M. R. Robilotta, Phys. Rev. C 28, 1812 (1983).Google Scholar
  12. [10]
    J. I. Fujita and H. Miyazawa, Prog. Theor. Phys. 17, 360 (1957).Google Scholar
  13. [11]
    C. Hajduk and P. U. Sauer, Nucl. Phys. A322, 329 (1979)CrossRefGoogle Scholar
  14. [11]a
    C.Hajduk, P. U. Sauer, and W. Strueve, Nucl. Phys. A405, 581 (1983); P. U. Sauer, Nuovo Cimento 76, 309 (1983).CrossRefGoogle Scholar
  15. [12]
    C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys. Rev. Lett. 55, 374 (1985).Google Scholar
  16. [13]
    C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys. Rev. C 33, 1740 (1986).CrossRefGoogle Scholar
  17. [14]
    T. Sasakawa and S. Ishikawa, Few-Body Systems (Physica Acta Austriaca) 1, 3 (1986).CrossRefGoogle Scholar
  18. [15]
    A. Bomelburg, preprint.Google Scholar
  19. [16]
    See these Proceedings.Google Scholar
  20. [17]
    H. P. Noyes, in “Three Body Problem in Nuclear and Particle Physics, edited by J. C. S. McKee and P. M. Rolph (North-Holland, Amsterdam, 1970), p. 2.Google Scholar
  21. [18]
    P. M. Prenter, Splines and Variational Methods (Wiley, New York, 1975).Google Scholar
  22. [19]
    G. L. Payne, J. L. Friar, B. F. Gibson, and I. R. Afnan, Phys. Rev. C 22, 823 (1980).CrossRefGoogle Scholar
  23. [20]
    J. L. Friar, B. F. Gibson, and G. L. Payne, Phys. Rev. C 24, 2279 (1981).CrossRefGoogle Scholar
  24. [21]
    R. V. Reid, Ann. Phys. (NY) 50, 411 (1968); B. Day, Phys. Rev. C 24, 1203 (1981).CrossRefGoogle Scholar
  25. [22]
    R. B. Wiringa, R. A. Smith, and T. A. Ainsworth, Phys. Rev. C 29, 1207 (1984).CrossRefGoogle Scholar
  26. [23]
    S. A. Coon and M. D. Scadron, Phys. Rev. C 23, 1150 (1981).CrossRefGoogle Scholar
  27. [24]
    J. L. Friar and J. W. Negele, Adv. Nucl. Phys. 8, 219 (1975).Google Scholar
  28. [25]
    J. L. Friar, B. F. Gibson, E. L. Tomusiak, and G. L. Payne, Phys. Rev. C 24, 665 (1981).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • G. L. Payne
    • 1
  1. 1.The University of IowaIowa CityUSA

Personalised recommendations