Solving large sparse linear systems with guaranteed accuracy

  • U. Schauer
  • R. A. Toupin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 235)


Conjugate Gradient Method Interval Arithmetic Precision Arithmetic Interval Vector Interval Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BOH77]
    Bohlender, G. (1977), Genaue Summation von Gleitkommazahlen. Pp.21–32 in: Computing Supplementum 1 Grundlagen der Computer Arithmetik (Springer, Berlin-Heidelberg-New York).Google Scholar
  2. [COL64]
    Collatz, L. (1964), Funktionalanalysis und numerische Mathematik. (Springer, Berlin-Heidelberg-New York).Google Scholar
  3. [DEK71]
    Dekker, T.J. (1971), A floating-point technique for extending the available precision. Pp.224–242 in: Numerische Mathematik 18 (Springer, Berlin-Heidelberg-New York).Google Scholar
  4. [GUS72]
    Gustavson, F. G. (1972), Some basic techniques for solving sparse systems of linear equations. Pp. 41–52 in: Rose, D.J., Willoughby, R.A. eds. Sparse matrices and their applications. Proceedings of a Symposium 1971 (Plenum Press, New York).Google Scholar
  5. [HAH83]
    Hahn, W., Mohr, K., Schauer, U. (1983), Some techniques for solving linear equation systems with guarantee. (IBM technical note TN 83.01) to appear in Computing.Google Scholar
  6. [HES84]
    Hestenes, M. R. (1984), Conjugate direction methods in optimization. (Springer, Berlin-Heidelberg-New York).Google Scholar
  7. [IBM83]
    ACRITH High accuracy arithmetic subroutine library. General information manual, IBM-GC33-6163. Program description and users guide, IBM-SC33-6164.Google Scholar
  8. [JOH82]
    Johnson, O. G., Michelli, C. A., Paul, G.(1982), Polynomial preconditioners for conjugate gradient calculations. (IBM technical report RC9208).Google Scholar
  9. [KAH65]
    Kahan, W.(1965), Further remarks on reducing truncation errors. P.40 in: Communications of the ACM Vol.8.Google Scholar
  10. [KUL80]
    Kulisch, U., Miranker, W.L. (1980), Computer arithmetic in theory and practice. (Academic Press, London-New York-San Francisco).Google Scholar
  11. [MEI77]
    Meijerink, J. A., Vorst, H. A.(1977), An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Pp. 148–162 in: Mathematics of computation 31,137.Google Scholar
  12. [NIC77]
    Nickel, K. (1977), Interval analysis. Pp. 193–222 in: Jacobs, D. ed The state of the art in numerical analysis, Proceedings of a conference 1976 (Academic Press, London-New York-San Francisco).Google Scholar
  13. [SCH77]
    Schek, H., Steidler, F., Schauer, U. (1977), Ausgleichung grosser geodätischer Netze mit Verfahren für schwach besetzte Matrizen. Theoretische Geodäsie 87 (Bayrische Akademie der Wissenschaften).Google Scholar
  14. [RUM83]
    Rump, S. M. (1983), Solving Algebraic Problems with high accuracy. Pp. 53–118 in: Kulisch, U., Miranker, W.L. eds. A new approach to scientific computation, Proceedings of a symposium 1982. (Academic Press, London-New York-San Francisco).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • U. Schauer
  • R. A. Toupin

There are no affiliations available

Personalised recommendations