Case studies for augmented floating-point arithmetic

  • W. L. Miranker
  • M. Mascagni
  • S. Rump
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 235)


Double Precision Gaussian Elimination Conjugate Gradient Algorithm Computer Arithmetic Single Precision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bertero, M., DeMol, C., Viano, G.A.: The Stability of Inverse Problems in Optics, H.P. Baltes, ed., Springer-Verlag, Berlin 1980.Google Scholar
  2. [2]
    Kaucher, E., and Miranker, W.L.: Self-Validating Numerics for Function Space Problems, Academic Press, N.Y. 1984.Google Scholar
  3. [3]
    Kaucher, E. and Rump, S.: E-Methods for Fixed-Point Equations f(x)=x, Computing 28 (1982) 31–42.Google Scholar
  4. [4]
    Kulish, U.W. and Miranker, W.L.: Computer Arithmetic in Theory and Practice, Academic Press, N.Y. 1982.Google Scholar
  5. [5]
    Kulish, U.W. and Miranker, W.L., eds.: A New Approach to Scientific Computation, Academic Press, N.Y. 1983.Google Scholar
  6. [6]
    Kulisch, U.W. and Miranker, W.L.: The Arithmetic of the Digital Computer, IBM Research Center Report #RC10580, 1984.Google Scholar
  7. [7]
    Lapidus, L, Aiken, R.C. and Liu, Y.A.: The Occurrence and Numerical Solution of Physical and Chemical Systems Having Widely Varying Time Constants, Stiff Differential Equations, R.A. Willoughby, ed., Plenum Press, N.Y. 1979.Google Scholar
  8. [8]
    Mascagni, M. and Miranker, W.L.: Arithmetically Improved Algorithmic Performance, to appear in Computing.Google Scholar
  9. [9]
    Miranker, W.L.: Numerical Methods for Stiff Equations and Singular Perturbation Problems, Reidel Publishing Co., Dordrecht 1981.Google Scholar
  10. [10]
    Miranker, W.L. and Rump, S.: Case Studies for ACRITH, IBM Research Center Report #RC10249, 1983.Google Scholar
  11. [11]
    Parlett, B.N.: The Symmetric Eigenvalue Problem, Prentice-Hall, N.Y. 1980.Google Scholar
  12. [12]
    Rump, S.: Solving Algebraic Problems with High Accuracy, in [5]..Google Scholar
  13. [13]
    Settler, H.: to appear.Google Scholar
  14. [14]
    Stoer, J. and Bulirsh, R.: Introduction to Numerical Analysis, Springer-Verlag, Berlin 1983.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • W. L. Miranker
    • 1
  • M. Mascagni
    • 1
  • S. Rump
    • 2
  1. 1.IBM T.J. Watson Research CenterYorktown Heights
  2. 2.IBM Development LaboratoryBoeblingenW. Germany

Personalised recommendations