# New results on verified inclusions

• Siegfried M. Rump
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 235)

## Abstract

The computational results of traditional numerical algorithms on computers are usually good approximations to the solution of a given problem. However, no verification is provided for some bound on the maximum relative error of the approximation. As can be demonstrated by ill-conditioned examples, those approximations may be drastically wrong. The algorithms based on the inclusion theory (cf. [38]) do have an automatic verification process. Rather than approximations to the solution an inclusion of the solution is computed and the correctness of the bounds together with the existence and uniqueness of the solution within the bounds is automatically verified by the computer without any effort on the part of the user. The computing time of these algorithms is of the order of a comparable, standard floating-point algorithm (such as Gaussian elimination in case of general linear systems).

In the following some new results complementing the inclusion theory are given. One of the main results is that the inclusion sets need not to be convex. Therefore other types of inclusion sets such as torus-sectors can be used. Another main observation is that the new and old theorems can be proved without using fixed point theorems. Moreover improvements of existing theorems of the inclusion theory by means of weaker assumptions are presented.

Another fundamental observation is the following. It is well-known that a real iteration in IRn with affine iteration function converges if and only if the spectral radius of the iteration matrix is less than one. It can be shown that a similar result holds for our inclusion algorithm: An inclusion will be achieved if and only if the spectral radius of the iteration matrix is less then one. This result is best possible.

It is demonstrated by means of theorems and examples that even for extremely ill-conditioned examples very sharp inclusions of the solution are computed. The inclusions are almost always of least significant bit accuracy, i.e. the left and right bounds of the inclusion are adjacent floating-point numbers.

## Keywords

Spectral Radius Iteration Scheme Decimal Digit Iteration Matrix Interval Vector
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. [1]
Abbott, J.P., Brent, R.P. (1975). Fast Local Convergence with Single and Multistep Methods for Nonlinear Equations, Austr. Math. Soc. 19 (series B), 173–199.Google Scholar
2. [2]
Alefeld, G., Intervallrechnung über den komplexen Zahlen und einige Anwendungen. Dissertation, Universität Karlsruhe, 1968.Google Scholar
3. [3]
Alefeld, G. and Herzberger, J., "Einführung in die Intervallrechnung". Reihe Informatik, 12. Wissenschaftsverlag des Bibliographischen Instituts Mannheim, 1974.Google Scholar
4. [4]
Alefeld, G. and Herzberger, J., "Introduction to Interval Analysis", Academic Press, New York (1983).Google Scholar
5. [5]
Alefeld, G. (1979). Intervallanalytische Methoden bei nichtlinearen Gleichungen. In "Jahrbuch Überblicke Mathematik 1979", B.I. Verlag, Zürich.Google Scholar
6. [6]
Bauer, F.L. and Samelson, K. Optimale Rechengenauigkeit bei Rechenanlagen mit gleitendem Komma, Z. Angew. Math. Phys. 4, 312–316 (1953).Google Scholar
7. [7]
Bohlender, G., Floating-point computation of functions with maximum accuracy. IEEE Trans. Compute. C-26, No. 7, 621–632 (1977).Google Scholar
8. [8]
Bohlender, G., Genaue Summation von Gleitkommazahlen, Computing Suppl. 1, 21–32 (1977).Google Scholar
9. [9]
Collatz, L., "Funktionalanalysis und Numerische Mathematik," Springer-Verlag, Berlin and New York, 1968.Google Scholar
10. [10]
Coonan, J., et al. (1979). A proposed standard for floating-point arithmetic, SIGNUM Newsletter.Google Scholar
11. [11]
Forsythe, G.E., and Moler, C.B., "Computer Solution of Linear Algebraic Systems", Prentice-Hall, Englewood Cliffs, New Jersey, 1967.Google Scholar
12. [12]
Forsythe, G.E., Pitfalls in computation, or why a math book isn't enough, Tech.Rep. No. CS147, pp. 1–43. Computer Science Department, Stanford University, Stanford,California, 1970.Google Scholar
13. [13]
Haas, H.Ch., Implementierung der komplexen Gleitkommaarithmetik mit maximaler Genauigkeit. Diplomarbeit, Institut für Angewandte Mathematik, Universität Karlsruhe, 1975.Google Scholar
14. [14]
Hansen, E., Interval Arithmetic in Matrix Computations, Part 1. SIAM J. Numer. Anal. 2, 308–320 (1965), Part II. SIAM J. Numer. Anal. 4, 1–9 (1967).Google Scholar
15. [15]
Heuser, H. (1967). Funktionalanalysis. Mathematische Leitfäden, G.B. Teubner, Stuttgart.Google Scholar
16. [16]
Kahan, W. and Parlett, B.N., Können Sie sich auf Ihren Rechner verlassen?, "Jahrbuch Überblicke Mathematik 1978". Wissenschaftsverlag des Bibliographischen Instituts Mannheim, pp. 199–216, (1978).Google Scholar
17. [17]
Kaucher, E., Rump, S.M. (1982). E-methods for Fixed Point Equations f(x)=x, Computing 28, p.31–42.Google Scholar
18. [18]
Kaucher, E., Miranker, W.L., "Self-Validating Numerics of Function Space Problems", Academic Press, New York (1984).Google Scholar
19. [19]
INTEL 12 1586-001. (1980). The 8086 Family User's Manual, Numeric Supplement.Google Scholar
20. [20]
Köberl, D. (1980). The Solution of Non-linear Equations by the Computation of Fixed Points with a Modification of Sandwich Method, Computing, 25, 175–178.Google Scholar
21. [21]
Krawczyk, R. (1969). Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken, Computing, 4, 187–220.Google Scholar
22. [22]
23. [23]
Kulisch, U., An axiomatic approach to rounded computations, TS Report No. 1020, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1969, and Numer. Math, 19, 1–17 (1971).Google Scholar
24. [24]
Kulisch, U., Grundzüge der Intervallrechnung, Überblicke Mathematik 2, Bibliographisches Institut Mannheim, 51–98 (1969).Google Scholar
25. [25]
Kulisch, U., Formalization and implementation of floating-point arithmetic, Computing 14, 323–348 (1975).Google Scholar
26. [26]
Kulisch, U., "Grundlagen des Numerischen Rechnens-Mathematische Begründung der Rechnerarithmetik", Reihe Informatik, 19. Wissenschaftsverlag des Bibliographischen Instituts Mannheim, 1976.Google Scholar
27. [27]
Kulisch, U., Ein Konzept für eine allgemeine Theorie der Rechnerarithmetik, Computing Suppl. 1, 95–105 (1977).Google Scholar
28. [28]
Kulisch, U., Miranker, W.L. (1981). Computer Arithmetic in Theory and Practise. Academic Press, New York.Google Scholar
29. [29]
Kulisch, U.W., Miranker, W.L. (eds.): A New Approach to Scientific Computation, Academic Press, New York, 1983.Google Scholar
30. [30]
Moore, R.E., "Interval Analysis". Prentice-Hall, Englewood Cliffs, New Jersey, 1966.Google Scholar
31. [31]
Moore, R.E. (1977). A Test for Existence of Solutions for Non-Linear Systems, SIAM J. Numer. Anal., 4.Google Scholar
32. [32]
Moré, J.J., Cosnard, M.Y. (1979). Numerical Solution of Non-Linear Equations. ACM Trans. on Math. Software, Vol. 5, No. 1, 64–85.Google Scholar
33. [33]
Ortega, J.M., Reinboldt, W.C. (1970). Iterative Solution of Non-linear Equations in several Variables. Academic Press, New York-San Francisco-London.Google Scholar
34. [34]
Perron, O., "Irrationalzahlen". de Gruyter, Berlin, 1960.Google Scholar
35. [35]
Rall, L.B. (1981). Mean value and Taylor forms in interval analysis, SIAM J. Math. Anal. 14, No. 2 (1983).Google Scholar
36. [36]
Reinsch, Ch., Die Behandlung von Rundungsfehlern in der Numerischen Analysis, "Jahrbuch Überblicke Mathematik 1979", Wissenschaftsverlag des Bibliographischen Instituts Mannheim, 43–62 (1979).Google Scholar
37. [37]
Rump, S.M. (1980). Kleine Fehlerschranken bei Matrixproblemen, Dissertation, Universität Karlsruhe.Google Scholar
38. [38]
Rump, S.M. (1983). Solving Algebraic Problems with High Accuracy, Habilitationsschrift, in Kulisch/Miranker: A New Approach to Scientific Computation, Academic Press, New York.Google Scholar
39. [39]
Rump, S.M. (1982). Solving Non-linear Systems with Least Significant Bit Accuracy, Computing 29, 183–200.Google Scholar
40. [40]
Rump, S.M. (1984). Solution of Linear and Nonlinear Algebraic Problems with Sharp, Guaranteed Bounds, Computing Suppl. 5, 147–168.Google Scholar
41. [41]
Rump, S.M. and Kaucher, E., Small bounds for the solution of systems of linear equations, Computing Suppl. 2, 157–164 (1980).Google Scholar
42. [42]
Stoer, J. (1972). Einführung in die Numerische Mathematik I. Heidelberger Taschenbücher, Band 105, Springer-Verlag, Berlin-Heidelberg-New York.Google Scholar
43. [43]
Stoer, J., Bulirsch, R. (1973). Einführung in die Numerische Mathematik II. Heidelberger Taschenbücher, Band 114, Springer-Verlag, Berlin-Heidelberg-New York.Google Scholar
44. [44]
Ullrich, Ch., Zur Konstruktion komplexer Kreisarithmetiken Computing Suppl. 1, 135–150 (1977).Google Scholar
45. [45]
Varga, R.S. (1962). Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
46. [46]
Walter, W. (1970). Differential and integral Inequalities. Berlin-Heidelberg-New York: Springer.Google Scholar
47. [47]
Wilkinson, J.H., "Rounding Errors in Algebraic Processes". Prentice-Hall, Englewood Cliffs, New Jersey, 1963.Google Scholar
48. [48]
Wongwises, P. Experimentelle Untersuchungen zur numerischen Auflösung von linearen Gleichungssystemen mit Fehlerfassung, Interner Bericht 75/1, Institut für Praktische Mathematik, Universität Karlsruhe.Google Scholar
49. [49]
Yohe, J.M., Roundings in floating-point arithmetic, IEEE Trans. Comput. C.12 No. 6, 577–586 (1973).Google Scholar
50. [50]
Zielke, R., Algol-Katalog Matrizenrechnung, Oldenburg Verlag, München, Wien (1972).Google Scholar
51. [51]
ACRITH High-Accuracy Arithmetic Subroutine Library: General Information Manual, IBM Publications, GC33-6163, (1985).Google Scholar