An interactive verification system based on dynamic logic

  • R. Hähnle
  • M. Heisel
  • W. Reif
  • W. Stephan
Program Verification
Part of the Lecture Notes in Computer Science book series (LNCS, volume 230)


An interactive verification system based on dynamic logic is presented. This approach allows to strengthen the role of "dynamic reasoning", i.e. reasoning in terms of state transitions caused by programs.

The advantages of the approach are: (i) dynamic logic is more expressive than HOARE's logic, e.g. termination and program implications can be expressed; (ii) user-defined rules enable reasoning in a very natural way; (iii) simpler verification conditions are obtained; (iv) many proofs can be performed schematically.

The problem of rule validation is discussed.

An example demonstrates the style of reasoning supported by the system.


Sequent Calculus Dynamic Logic Rule Application Rule Scheme Predicate Transformer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Di76]
    Dijkstra, E.W. A Discipline of Programming. Prentice-Hall (1976)Google Scholar
  2. [Go82]
    Goldblatt, R. Axiomatising the Logic of Computer Programming. Springer-LNCS 130 (1982)Google Scholar
  3. [GMW79]
    Gordon, M. & Milner, R. & Wadsworth, C. Edinburgh-LCF. Springer-LNCS 78 (1979)Google Scholar
  4. [Haj81]
    Hajek, P. Making dynamic logic first order. Proc. Math. Foundations of Computer Science, Springer-LNCS 118 (1981), 287–295Google Scholar
  5. [Har79]
    Harel, D. First Order Dynamic Logic. Springer-LNCS 68 (1979)Google Scholar
  6. [Har84]
    Harel, D. Dynamic Logic. Handbook of Philosophical Logic, D. Gabbay and F. Guenther (eds.), Reidel (1984), vol. 2, 496–604Google Scholar
  7. [HHRS86]
    Hähnle, R. & Heisel, M. & Reif, W. & Stephan, W. The Karlsruhe Interactive Verifier — A Verification System based on Dynamic Logic. Interner Bericht 1/86, Fakultät für Informatik, Universität Karlsruhe (1986)Google Scholar
  8. [Ho69]
    Hoare, C.A.R. An axiomatic basis for computer programming. C.A.C.M. 12 (1969), 576–580Google Scholar
  9. [Prat76]
    Pratt, V.R. Semantical considerations on Floyd-Hoare logic. Proc. 17th Ann. I.E.E.E. Symp. on Foundations of Computer Science, 109–121Google Scholar
  10. [Praw65]
    Prawitz, D. Natural Deduction. Stockholm Studies in Philosophy 3, Almquist & Wicksell, Stockholm (1965)Google Scholar
  11. [Ri78]
    Richter, M.M. Logikkalküle. Teubner (1978)Google Scholar
  12. [RS84]
    Reif, W. & Stephan, W. Vollständigkeit einer modifizierten Goldblatt-Logik und Approximation der Omegaregel durch Induktion. Diplomarbeit, Fakultät für Informatik, Universität Karlsruhe (1984)Google Scholar
  13. [Sch84]
    Schmidt, D.A. A programming notation for tactical reasoning. Proc. 7th Int. Conf. on Automated Deduction, R.E. Shostak (ed.), Springer-LNCS 170 (1984), 445–460Google Scholar
  14. [St85]
    Stephan, W. A Logic for Recursive Programs. Interner Bericht 5/85, Fakultät für Informatik, Universität Karlsruhe (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • R. Hähnle
    • 1
  • M. Heisel
    • 1
  • W. Reif
    • 1
  • W. Stephan
    • 1
  1. 1.Institut für Informatik IUniversität KarlsruheKarlsruhe 1

Personalised recommendations