Program verifier "Tatzelwurm": Reasoning about systems systems of linear inequalities

  • Thomas Käufl
Program Verification
Part of the Lecture Notes in Computer Science book series (LNCS, volume 230)


An algorithm is presented deciding whether a system of linear inequalities over the rationals is unsatisfiable. If this is not the case the procedure eliminates subsumed inequalities and determines the implied equations. It is proved that the strongest conjunction of implied equations is obtained by the algorithm.


Linear Inequality Verification Condition Relation Symbol Strong Conjunction Program Verifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BLE]
    W.W. Bledsoe: A New Method for Proving Certain Presburger Formulas 4th Int. Joint Conference on Artificial Intelligence, Tiblisi, pp. 15–21: 1975Google Scholar
  2. [BUN]
    A. Bundy: The Computer Modelling of Mathematical Reasoning London: 1983Google Scholar
  3. [COO]
    D.C. Cooper: Programs for Mechanical Program Verification Machine Intelligence 7, B. Meltzer and D. Michie, eds., New York: 1971Google Scholar
  4. [KÄU1]
    Th. Käufl: Automated Construction of Verification Conditions in Schriften zur Informatik und angewandten Mathematik Nr. 87 RWTH Aachen: 1983Google Scholar
  5. [KÄU2]
    Th. Käufl: The Simplifier of the Program Verifier "Tatzelwurm" Österreichische Artificial Intelligence-Tagung 1985 Informatik-Fachberichte; Berlin, Heidelberg, New York: 1985Google Scholar
  6. [KIN69]
    J.C. King: A Program Verifier Ph.D. Thesis, Carnegie Mellon University, Pittsburgh: 1969Google Scholar
  7. [KIN72]
    J.C. King, R.W. Floyd: An Interpretation-Oriented Theorem Prover over Integers Journal of Computer and System Sciences 6, pp. 305–323: 1972Google Scholar
  8. [KR]
    G. Kreisel, J.-L. Krivine: Modelltheorie Berlin, Heidelberg, New York: 1972Google Scholar
  9. [LUC]
    D.C. Luckham, e.a.: Stanford Verifier User Manual Report No. Stan-CS-79-731 Computer Science Department, University of Stanford: 1979Google Scholar
  10. [NO]
    C.G. Nelson, D.C. Oppen: Simplification by Cooperating Decision Procedures ACM TOPLAS 1, pp. 245–257: 1979CrossRefGoogle Scholar
  11. [SHO]
    R. Shostak: On the SUP-INF Method for Proving Presburger Formulas JACM 24/4, pp. 529–543: 1977CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Thomas Käufl
    • 1
  1. 1.Institut für Informatik 1Universität KarlsruheKarlsruhe 1

Personalised recommendations